Processing math: 100%
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2023, Volume 113, Issue 1, Pages 3–10
DOI: https://doi.org/10.4213/mzm13530
(Mi mzm13530)
 

On a Polynomial Version of the Sum-Product Problem for Subgroups

S. A. Aleshinaa, I. V. Vyuginbcd

a University of Malaga
b Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow
c HSE University, Moscow
d Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
References:
Abstract: We generalize two results in the papers [1:x003] and [2:x003] about sums of subsets of Fp to the more general case in which the sum x+y is replaced by P(x,y), where P is a rather general polynomial. In particular, a lower bound is obtained for the cardinality of the range of P(x,y), where the variables x and y belong to a subgroup G of the multiplicative group of the field Fp. We also prove that if a subgroup G can be represented as the range of a polynomial P(x,y) for xA and yB, then the cardinalities of A and B are close in order to |G| .
Keywords: subgroup, polynomial, sum-product problem, sumset problem.
Funding agency Grant number
Russian Science Foundation 19-11-00001
This work was supported by the Russian Science Foundation under grant 19-11-00001, https://rscf.ru/project/19-11-00001/.
Received: 06.04.2022
Revised: 19.07.2022
English version:
Mathematical Notes, 2023, Volume 113, Issue 1, Pages 3–9
DOI: https://doi.org/10.1134/S0001434623010017
Bibliographic databases:
Document Type: Article
UDC: 511
Language: Russian
Citation: S. A. Aleshina, I. V. Vyugin, “On a Polynomial Version of the Sum-Product Problem for Subgroups”, Mat. Zametki, 113:1 (2023), 3–10; Math. Notes, 113:1 (2023), 3–9
Citation in format AMSBIB
\Bibitem{AleVyu23}
\by S.~A.~Aleshina, I.~V.~Vyugin
\paper On a~Polynomial Version of the Sum-Product Problem for Subgroups
\jour Mat. Zametki
\yr 2023
\vol 113
\issue 1
\pages 3--10
\mathnet{http://mi.mathnet.ru/mzm13530}
\crossref{https://doi.org/10.4213/mzm13530}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4563344}
\transl
\jour Math. Notes
\yr 2023
\vol 113
\issue 1
\pages 3--9
\crossref{https://doi.org/10.1134/S0001434623010017}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85185118877}
Linking options:
  • https://www.mathnet.ru/eng/mzm13530
  • https://doi.org/10.4213/mzm13530
  • https://www.mathnet.ru/eng/mzm/v113/i1/p3
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:305
    Full-text PDF :51
    Russian version HTML:233
    References:46
    First page:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025