Loading [MathJax]/jax/output/SVG/config.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2022, Volume 112, Issue 1, paper published in the English version journal (Mi mzm13275)  

Papers published in the English version of the journal

On Stable Solutions to a Weighted Degenerate Elliptic Equation with Advection Terms

Dao Trong Quyeta, Dao Manh Thangb

a Academy of Finance, Hanoi, Vietnam
b Hung Vuong High School for Gifted Students, Phu Tho, Vietnam
Abstract: In this paper, we study the elliptic equations
$$ -G_\alpha u+c({\rm x})\cdot\nabla_\alpha u=h({\rm x} )e^{u}, \qquad {\rm x} = (x,y) \in \mathbb R^{N_{1}}\times \mathbb R^{N_{2}}=\mathbb R^{N}, $$
where $G_{\alpha} =\Delta_{x}+ ( 1+\alpha )^{2}\lvert x\rvert^{2\alpha}\Delta_{y}$, $\alpha > 0$, is the Grushin operator. Here, the advection term $c({\rm x})$ is a smooth, divergence free vector field satisfying certain decay condition and $h({\rm x}) $ is a continuous function such that $h({\rm x} )\geq C|{\rm x}|^l$, $l\geq 0$, where $|{\rm x}|$ is the Grushin norm of ${\rm x}$. We will prove that the equation has no stable solutions provided that
$$ N_{\alpha}< 10+ 4 l, $$
where $N_\alpha:=N_1+(1+\alpha)N_2$ is the homogeneous dimension of $\mathbb R^N$ associated to the Grushin operator.
Keywords: Liouville type theorems, Advection terms, Stable solutions, elliptic equations.
Received: 31.08.2021
English version:
Mathematical Notes, 2022, Volume 112, Issue 1, Pages 109–115
DOI: https://doi.org/10.1134/S0001434622070124
Bibliographic databases:
Document Type: Article
Language: English
Citation: Dao Trong Quyet, Dao Manh Thang, “On Stable Solutions to a Weighted Degenerate Elliptic Equation with Advection Terms”, Math. Notes, 112:1 (2022), 109–115
Citation in format AMSBIB
\Bibitem{DaoTha22}
\by Dao Trong Quyet, Dao Manh Thang
\paper On Stable Solutions to a Weighted Degenerate
Elliptic Equation with Advection Terms
\jour Math. Notes
\yr 2022
\vol 112
\issue 1
\pages 109--115
\mathnet{http://mi.mathnet.ru/mzm13275}
\crossref{https://doi.org/10.1134/S0001434622070124}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4473230}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85136613985}
Linking options:
  • https://www.mathnet.ru/eng/mzm13275
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:104
     
      Contact us:
    math-net2025_03@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025