Abstract:
Uniformly convex asymmetric spaces are defined. It is proved that every nonempty closed convex set in a uniformly convex complete asymmetric space is a set of approximative uniqueness (and, in particular, a Chebyshev set).
This publication is cited in the following 23 articles:
I. G. Tsarkov, “Svoistva diskretnogo ne bolee chem schetnogo ob'edineniya mnozhestv v nesimmetrichnykh prostranstvakh”, Matem. sb., 216:2 (2025), 128–144
G. E. Ivanov, “Ravnomerno vypuklye mnozhestva v banakhovykh prostranstvakh”, Matem. zametki, 117:2 (2025), 238–256
Tulsi Dass Narang, Sumit Chandok, Sahil Gupta, “On Various Types of Uniform Rotundities”, Annales Mathematicae Silesianae, 2025
I.G. Tsar'kov, “Convexity of $\delta$-Suns and $\gamma$-Suns in Asymmetric Spaces”, Russ. J. Math. Phys., 31:2 (2024), 325
I. G. Tsar'kov, “Uniformly convex cone spaces and properties of convex sets in them”, Math. Notes, 116:4 (2024), 831–840
I.G. Tsarkov, “Relations Between Various Types of Suns in Asymmetric Spaces”, Russ. J. Math. Phys., 31:3 (2024), 562
A. R. Alimov, I. G. Tsar'kov, “Chebyshev sets composed of subspaces in asymmetric normed spaces”, Izv. Math., 88:6 (2024), 1032–1049
Shelly Garg, Harpreet K. Grover, T. D. Narang, “Rotundity of Quotient Spaces in Metric Linear Spaces”, IJMSI, 19:2 (2024), 119
I.G. Tsar'kov, “Local and Global Suns”, Russ. J. Math. Phys., 31:4 (2024), 765
A. R. Alimov, K. S. Ryutin, I. G. Tsar'kov, “Existence, uniqueness, and stability of best and near-best approximations”, Russian Math. Surveys, 78:3 (2023), 399–442
I. G. Tsar'kov, “Continuous selections of set-valued mappings and approximation in asymmetric and semilinear spaces”, Izv. Math., 87:4 (2023), 835–851
G. A. Akishev, “Neravenstvo raznykh metrik Nikolskogo dlya trigonometricheskikh polinomov v prostranstve so smeshannoi nesimmetrichnoi normoi”, Tr. IMM UrO RAN, 29, no. 4, 2023, 11–26
A. R. Alimov, “Strict protosuns in asymmetric spaces of continuous functions”, Results Math., 78:3 (2023)
I. G. Tsar'kov, “Connectedness in asymmetric spaces”, Journal of Mathematical Analysis and Applications, 527:1 (2023), 127381
I. G. Tsar'kov, “Reflexivity for spaces with extended norm”, Russ. J. Math. Phys., 30:3 (2023), 399
I. G. Tsar'kov, “Continuity of a Metric Function and Projection in Asymmetric Spaces”, Math. Notes, 111:4 (2022), 616–623
A. R. Alimov, I. G. Tsar'kov, “Ball-complete sets and solar properties of sets in asymmetric spaces”, Results Math., 77:2 (2022), 86
A. R. Alimov, I. G. Tsar'kov, “Some Classical Problems of Geometric Approximation Theory in Asymmetric Spaces”, Math. Notes, 112:1 (2022), 3–16
A. R. Alimov, I. G. Tsarkov, “$\overset{\circ}B$-complete sets: approximative and structural properties”, Siberian Math. J., 63:3 (2022), 412–420
I. G. Tsar'kov, “Uniformly and locally convex asymmetric spaces”, Sb. Math., 213:10 (2022), 1444–1469