Loading [MathJax]/jax/output/SVG/config.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2021, Volume 110, Issue 4, Pages 507–523
DOI: https://doi.org/10.4213/mzm13084
(Mi mzm13084)
 

This article is cited in 2 scientific papers (total in 2 papers)

Absolute Continuity of the Spectrum of a Periodic 3D Magnetic Schrödinger Operator with Singular Electric Potential

L. I. Danilov

Udmurt Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Izhevsk
Full-text PDF (607 kB) Citations (2)
References:
Abstract: We prove that the spectrum of a periodic 3D magnetic Schrödinger operator whose electric potential $V=d\mu/dx$ is the derivative of a measure is absolutely continuous provided that the distribution $d|\mu|/dx$ is $(-\Delta)$-bounded in the sense of quadratic forms with bound not exceeding some constant $C(A)\in(0,1)$, and the periodic magnetic potential $A$ satisfies certain conditions, which, in particular, hold if $A\in H^q_{\mathrm{loc}}(\mathbb R^3;\mathbb R^3)$ for some $q>1$ or $A\in C(\mathbb R^3;\mathbb R^3)\cap H^q_{\mathrm{loc}}(\mathbb R^3;\mathbb R^3)$ for some $q>1/2$.
Keywords: absolutely continuous spectrum, periodic Schrödinger operator.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 121030100005-1
This work was supported by the Ministry of Science and Higher Education of the Russian Federation (project no. 121030100005-1).
Received: 25.03.2021
English version:
Mathematical Notes, 2021, Volume 110, Issue 4, Pages 497–510
DOI: https://doi.org/10.1134/S0001434621090200
Bibliographic databases:
Document Type: Article
UDC: 517.958+517.984.5
Language: Russian
Citation: L. I. Danilov, “Absolute Continuity of the Spectrum of a Periodic 3D Magnetic Schrödinger Operator with Singular Electric Potential”, Mat. Zametki, 110:4 (2021), 507–523; Math. Notes, 110:4 (2021), 497–510
Citation in format AMSBIB
\Bibitem{Dan21}
\by L.~I.~Danilov
\paper Absolute Continuity of the Spectrum of a Periodic 3D Magnetic Schr\"{o}dinger Operator with Singular Electric Potential
\jour Mat. Zametki
\yr 2021
\vol 110
\issue 4
\pages 507--523
\mathnet{http://mi.mathnet.ru/mzm13084}
\crossref{https://doi.org/10.4213/mzm13084}
\elib{https://elibrary.ru/item.asp?id=47521443}
\transl
\jour Math. Notes
\yr 2021
\vol 110
\issue 4
\pages 497--510
\crossref{https://doi.org/10.1134/S0001434621090200}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000711049900020}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85118202166}
Linking options:
  • https://www.mathnet.ru/eng/mzm13084
  • https://doi.org/10.4213/mzm13084
  • https://www.mathnet.ru/eng/mzm/v110/i4/p507
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:315
    Full-text PDF :54
    References:52
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025