Loading [MathJax]/jax/element/mml/optable/SpacingModLetters.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2021, Volume 109, Issue 4, Pages 500–507
DOI: https://doi.org/10.4213/mzm13040
(Mi mzm13040)
 

This article is cited in 6 scientific papers (total in 6 papers)

Estimates of Derivatives in Sobolev Spaces in Terms of Hypergeometric Functions

T. A. Garmanova

Lomonosov Moscow State University
Full-text PDF (444 kB) Citations (6)
References:
Abstract: The paper deals with sharp estimates of derivatives of intermediate order kn1 in the Sobolev space W˚, n\in\mathbb N. The functions A_{n,k}(x) under study are the smallest possible quantities in inequalities of the form
|y^{(k)}(x)|\le A_{n,k}(x)\|y^{(n)}\|_{L_2[0;1]}.
The properties of the primitives of shifted Legendre polynomials on the interval [0;1] are used to obtain an explicit description of these functions in terms of hypergeometric functions. In the paper, a new relation connecting the derivatives and primitives of Legendre polynomials is also proved.
Keywords: Sobolev space, Legendre polynomials, embedding constants, analytic inequalities, hypergeometric functions.
Funding agency Grant number
Russian Science Foundation 20-11-20261
The work was supported by the Russian Science Foundation under grant 20-11-20261.
Received: 29.11.2020
English version:
Mathematical Notes, 2021, Volume 109, Issue 4, Pages 527–533
DOI: https://doi.org/10.1134/S0001434621030214
Bibliographic databases:
Document Type: Article
UDC: 517.518.23+517.588
Language: Russian
Citation: T. A. Garmanova, “Estimates of Derivatives in Sobolev Spaces in Terms of Hypergeometric Functions”, Mat. Zametki, 109:4 (2021), 500–507; Math. Notes, 109:4 (2021), 527–533
Citation in format AMSBIB
\Bibitem{Gar21}
\by T.~A.~Garmanova
\paper Estimates of Derivatives in Sobolev Spaces in Terms of Hypergeometric Functions
\jour Mat. Zametki
\yr 2021
\vol 109
\issue 4
\pages 500--507
\mathnet{http://mi.mathnet.ru/mzm13040}
\crossref{https://doi.org/10.4213/mzm13040}
\transl
\jour Math. Notes
\yr 2021
\vol 109
\issue 4
\pages 527--533
\crossref{https://doi.org/10.1134/S0001434621030214}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000670513100021}
Linking options:
  • https://www.mathnet.ru/eng/mzm13040
  • https://doi.org/10.4213/mzm13040
  • https://www.mathnet.ru/eng/mzm/v109/i4/p500
  • This publication is cited in the following 6 articles:
    1. T. A. Garmanova, I. A. Sheipak, “Exact estimates for higher order derivatives in Sobolev spaces”, Moscow University Mathematics Bulletin, 79:1 (2024), 1–10  mathnet  crossref  crossref  elib
    2. D. D. Kazimirov, I. A. Sheipak, “Exact Estimates of Functions in Sobolev Spaces with Uniform Norm”, Dokl. Math., 2024  crossref
    3. D. D. Kazimirov, I. A. Sheypak, “Exact estimates of functions in Sobolev spaces with uniform norm”, Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, 516 (2024), 9  crossref
    4. T. A. Garmanova, I. A. Sheipak, “Relationship Between the Best $L_p$ Approximations of Splines by Polynomials with Estimates of the Values of Intermediate Derivatives in Sobolev Spaces”, Math. Notes, 114:4 (2023), 625–629  mathnet  crossref  crossref
    5. I. A. Sheipak, “Bernoulli numbers in the embedding constants of Sobolev spaces with different boundary conditions”, St. Petersburg Math. J., 35:2 (2024), 417–431  mathnet  crossref
    6. T. A. Garmanova, I. A. Sheipak, “Orthogonality Relations for the Primitives of Legendre Polynomials and Their Applications to Some Spectral Problems for Differential Operators”, Math. Notes, 110:4 (2021), 489–496  mathnet  crossref  crossref  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:362
    Full-text PDF :108
    References:62
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025