Loading [MathJax]/jax/output/SVG/config.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2021, Volume 109, Issue 5, Pages 781–792
DOI: https://doi.org/10.4213/mzm12890
(Mi mzm12890)
 

This article is cited in 4 scientific papers (total in 4 papers)

Properties of Monotone Connected Sets

I. G. Tsar'kov

Moscow Center for Fundamental and Applied Mathematics
Full-text PDF (508 kB) Citations (4)
References:
Abstract: Properties of Menger-monotone sets are studied. It is proved that all boundedly weakly compact Menger-connected $(\omega\rhd n)$-approximatively compact sets are suns. The existence of a continuous selection of the Chebyshev near-center map (relative to $V$) is proved for the case in which $V\subset C(Q)$ is a $B^2$-infinitely connected set in the space $C(Q)$.
Keywords: Menger-monotone set, Menger-connected set, sun.
Funding agency Grant number
Russian Foundation for Basic Research 19-01-00332
This work was supported by the Russian Foundation for Basic Research under grant 19-01-00332-a.
Received: 08.09.2020
English version:
Mathematical Notes, 2021, Volume 109, Issue 5, Pages 819–827
DOI: https://doi.org/10.1134/S0001434621050138
Bibliographic databases:
Document Type: Article
UDC: 517.982.256
Language: Russian
Citation: I. G. Tsar'kov, “Properties of Monotone Connected Sets”, Mat. Zametki, 109:5 (2021), 781–792; Math. Notes, 109:5 (2021), 819–827
Citation in format AMSBIB
\Bibitem{Tsa21}
\by I.~G.~Tsar'kov
\paper Properties of Monotone Connected Sets
\jour Mat. Zametki
\yr 2021
\vol 109
\issue 5
\pages 781--792
\mathnet{http://mi.mathnet.ru/mzm12890}
\crossref{https://doi.org/10.4213/mzm12890}
\elib{https://elibrary.ru/item.asp?id=46881360}
\transl
\jour Math. Notes
\yr 2021
\vol 109
\issue 5
\pages 819--827
\crossref{https://doi.org/10.1134/S0001434621050138}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000670513000013}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85109721167}
Linking options:
  • https://www.mathnet.ru/eng/mzm12890
  • https://doi.org/10.4213/mzm12890
  • https://www.mathnet.ru/eng/mzm/v109/i5/p781
  • This publication is cited in the following 4 articles:
    1. A. R. Alimov, I. G. Tsar'kov, “Monotone path-connected sets in geometric approximation theory and their applications”, jour, 2:2 (2024), 30  crossref
    2. A. R. Alimov, “On local properties of spaces implying monotone path-connectedness of suns”, J. Anal., 31:3 (2023), 2287  crossref  mathscinet
    3. A. R. Alimov, “Tomograficheskie kharakterizatsionnye teoremy dlya solnts v trekhmernykh prostranstvakh”, Tr. IMM UrO RAN, 28, no. 2, 2022, 45–55  mathnet  crossref  elib
    4. A. R. Alimov, I. G. Tsar'kov, “Solarity and proximinality in generalized rational approximation in spaces $C(Q)$ and $L^p$”, Russ. J. Math. Phys., 29:3 (2022), 291  crossref  mathscinet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:304
    Full-text PDF :88
    References:43
    First page:7
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025