Abstract:
We define a fractional power of the Dunkl Laplacian, a fractional modulus of smoothness,
and a fractional
K-functional on
Lp-spaces with Dunkl weight.
As an application, we extend our previous results and prove direct and inverse theorems of
approximation theory and some inequalities for entire functions of spherical
exponential type in the fractional setting.
\Bibitem{GorIva19}
\by D.~V.~Gorbachev, V.~I.~Ivanov
\paper Fractional Smoothness in
$L^p$
with Dunkl Weight
and Its Applications
\jour Math. Notes
\yr 2019
\vol 106
\issue 4
\pages 537--561
\mathnet{http://mi.mathnet.ru/mzm12586}
\crossref{https://doi.org/10.1134/S0001434619090232}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4028874}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000492034300023}
\elib{https://elibrary.ru/item.asp?id=41704553}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85074126952}
Linking options:
https://www.mathnet.ru/eng/mzm12586
This publication is cited in the following 9 articles:
V. I. Ivanov, “Generalized one-dimensional Dunkl transform in direct problems of approximation theory”, Math. Notes, 116:2 (2024), 265–278
V. I. Ivanov, “Obobschennoe preobrazovanie Danklya na pryamoi v obratnykh zadachakh teorii priblizhenii”, Chebyshevskii sb., 25:2 (2024), 67–81
O. L. Vinogradov, “Sharp Bernstein-type inequalities for Fourier-Dunkl multipliers”, Sb. Math., 214:1 (2023), 1–27
E. S. Bhaya, E. A. Hessen, A. H. Ibrahim, “Dunkl weigted approxmation of functiones”, Physical Mesomechanics of Condensed Matter: Physical Principles of Multiscale Structure Formation and the Mechanisms of Nonlinear Behavior: MESO 2022, AIP Conf. Proc., 2899, 2023, 050034
D. V. Gorbachev, “Bernstein Inequality in Lp on the Line with Power Weight for p>0”, Math. Notes, 111:2 (2022), 308–311
A. Velicu, N. Yessirkegenov, “Rellich, Gagliardo-Nirenberg, Trudinger and Caffarelli-Kohn-Nirenberg inequalities for Dunkl operators and applications”, Isr. J. Math., 247:2 (2022), 741–782
D. V. Gorbachev, “Tochnye neravenstva Bernshteina — Nikolskogo dlya polinomov i tselykh funktsii eksponentsialnogo tipa”, Chebyshevskii sb., 22:5 (2021), 58–110
D. V. Gorbachev, V. I. Ivanov, S. Yu. Tikhonov, “Sharp approximation theorems and Fourier inequalities in the dunkl setting”, J. Approx. Theory, 258 (2020), 105462
D. V. Gorbachev, V. I. Ivanov, “Nikol'skii–Bernstein Constants for Entire Functions of Exponential Spherical Type in Weighted Spaces”, Proc. Steklov Inst. Math. (Suppl.), 309:1 (2020), S24–S35