Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2019, Volume 106, Issue 4, paper published in the English version journal (Mi mzm12586)  

This article is cited in 9 scientific papers (total in 9 papers)

Papers published in the English version of the journal

Fractional Smoothness in Lp with Dunkl Weight and Its Applications

D. V. Gorbachev, V. I. Ivanov

Tula State University, Tula, 300012 Russia
Citations (9)
Abstract: We define a fractional power of the Dunkl Laplacian, a fractional modulus of smoothness, and a fractional K-functional on Lp-spaces with Dunkl weight. As an application, we extend our previous results and prove direct and inverse theorems of approximation theory and some inequalities for entire functions of spherical exponential type in the fractional setting.
Keywords: Dunkl transform, generalized translation operator, convolution, Dunkl Laplacian, modulus of smoothness, K-functional.
Funding agency Grant number
Russian Science Foundation 18-11-00199
This work was supported by the Russian Science Foundation under grant 18-11-00199 and performed at Tula State University.
Received: 13.03.2019
English version:
Mathematical Notes, 2019, Volume 106, Issue 4, Pages 537–561
DOI: https://doi.org/10.1134/S0001434619090232
Bibliographic databases:
Document Type: Article
Language: English
Citation: D. V. Gorbachev, V. I. Ivanov, “Fractional Smoothness in Lp with Dunkl Weight and Its Applications”, Math. Notes, 106:4 (2019), 537–561
Citation in format AMSBIB
\Bibitem{GorIva19}
\by D.~V.~Gorbachev, V.~I.~Ivanov
\paper Fractional Smoothness in
$L^p$
with Dunkl Weight
and Its Applications
\jour Math. Notes
\yr 2019
\vol 106
\issue 4
\pages 537--561
\mathnet{http://mi.mathnet.ru/mzm12586}
\crossref{https://doi.org/10.1134/S0001434619090232}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4028874}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000492034300023}
\elib{https://elibrary.ru/item.asp?id=41704553}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85074126952}
Linking options:
  • https://www.mathnet.ru/eng/mzm12586
  • This publication is cited in the following 9 articles:
    1. V. I. Ivanov, “Generalized one-dimensional Dunkl transform in direct problems of approximation theory”, Math. Notes, 116:2 (2024), 265–278  mathnet  crossref  crossref
    2. V. I. Ivanov, “Obobschennoe preobrazovanie Danklya na pryamoi v obratnykh zadachakh teorii priblizhenii”, Chebyshevskii sb., 25:2 (2024), 67–81  mathnet  crossref
    3. O. L. Vinogradov, “Sharp Bernstein-type inequalities for Fourier-Dunkl multipliers”, Sb. Math., 214:1 (2023), 1–27  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    4. E. S. Bhaya, E. A. Hessen, A. H. Ibrahim, “Dunkl weigted approxmation of functiones”, Physical Mesomechanics of Condensed Matter: Physical Principles of Multiscale Structure Formation and the Mechanisms of Nonlinear Behavior: MESO 2022, AIP Conf. Proc., 2899, 2023, 050034  crossref
    5. D. V. Gorbachev, “Bernstein Inequality in Lp on the Line with Power Weight for p>0”, Math. Notes, 111:2 (2022), 308–311  mathnet  crossref  crossref  isi
    6. A. Velicu, N. Yessirkegenov, “Rellich, Gagliardo-Nirenberg, Trudinger and Caffarelli-Kohn-Nirenberg inequalities for Dunkl operators and applications”, Isr. J. Math., 247:2 (2022), 741–782  crossref  mathscinet  isi  scopus
    7. D. V. Gorbachev, “Tochnye neravenstva Bernshteina — Nikolskogo dlya polinomov i tselykh funktsii eksponentsialnogo tipa”, Chebyshevskii sb., 22:5 (2021), 58–110  mathnet  crossref
    8. D. V. Gorbachev, V. I. Ivanov, S. Yu. Tikhonov, “Sharp approximation theorems and Fourier inequalities in the dunkl setting”, J. Approx. Theory, 258 (2020), 105462  crossref  mathscinet  zmath  isi
    9. D. V. Gorbachev, V. I. Ivanov, “Nikol'skii–Bernstein Constants for Entire Functions of Exponential Spherical Type in Weighted Spaces”, Proc. Steklov Inst. Math. (Suppl.), 309:1 (2020), S24–S35  mathnet  mathnet  crossref  crossref  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:293
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025