Abstract:
A method for constructing geometric solutions of the Riemann problem for an impulsively perturbed conservation law is described. A complete classification of the possible patterns of the phase flow is given and, for each of the possible cases, the limit in the sense of Hausdorff is constructed.
Citation:
V. V. Palin, “On the Passage to the Limit in the Construction of Geometric Solutions of the Riemann Problem”, Mat. Zametki, 108:3 (2020), 380–396; Math. Notes, 108:3 (2020), 356–369
\Bibitem{Pal20}
\by V.~V.~Palin
\paper On the Passage to the Limit in the Construction of Geometric Solutions of the Riemann Problem
\jour Mat. Zametki
\yr 2020
\vol 108
\issue 3
\pages 380--396
\mathnet{http://mi.mathnet.ru/mzm12517}
\crossref{https://doi.org/10.4213/mzm12517}
\elib{https://elibrary.ru/item.asp?id=45196458}
\transl
\jour Math. Notes
\yr 2020
\vol 108
\issue 3
\pages 356--369
\crossref{https://doi.org/10.1134/S0001434620090059}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000584617700005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85094138613}
Linking options:
https://www.mathnet.ru/eng/mzm12517
https://doi.org/10.4213/mzm12517
https://www.mathnet.ru/eng/mzm/v108/i3/p380
This publication is cited in the following 2 articles:
Gulmira M. Aybosinova, Vladimir Vladimirovich Palin, “On the conditions for the existence of a piecewise smooth solution of the Riemann problem for one class of conservation laws”, Applicable Analysis, 2025, 1
V. V. Palin, “Limit Passage in the Construction of a Geometric Solution: The Case of a Rarefaction Wave”, Proc. Steklov Inst. Math., 315 (2021), 171–189