Abstract:
An initial-boundary value problem for the multidimensional equation of ion-sound waves in a plasma is considered. Its time-local solvability in the classical sense in Hölder spaces is proved. This is a development of results in our previous papers, where the local solvability of one-dimensional analogs of the equation under consideration was established and, in the general case (regardless of the dimension of the space), sufficient conditions for the blow-up of the solution were obtained.
Keywords:
nonlinear initial-boundary value problem, Sobolev-type equations, exponential nonlinearity.
Citation:
A. A. Panin, G. I. Shlyapugin, “Local Solvability and Global Unsolvability of a Model of Ion-Sound Waves in a Plasma”, Mat. Zametki, 107:3 (2020), 426–441; Math. Notes, 107:3 (2020), 464–477
\Bibitem{PanShl20}
\by A.~A.~Panin, G.~I.~Shlyapugin
\paper Local Solvability and Global Unsolvability of a Model of Ion-Sound Waves in a Plasma
\jour Mat. Zametki
\yr 2020
\vol 107
\issue 3
\pages 426--441
\mathnet{http://mi.mathnet.ru/mzm12324}
\crossref{https://doi.org/10.4213/mzm12324}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4070863}
\elib{https://elibrary.ru/item.asp?id=43303246}
\transl
\jour Math. Notes
\yr 2020
\vol 107
\issue 3
\pages 464--477
\crossref{https://doi.org/10.1134/S0001434620030104}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000528213700010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85083776464}
Linking options:
https://www.mathnet.ru/eng/mzm12324
https://doi.org/10.4213/mzm12324
https://www.mathnet.ru/eng/mzm/v107/i3/p426
This publication is cited in the following 1 articles:
M. O. Korpusov, A. A. Panin, “On the blow-up of the solution and on the local and global solvability of the Cauchy problem for a nonlinear equation in Holder spaces”, J. Math. Anal. Appl., 504:2 (2021), 125469