Processing math: 100%
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2019, Volume 106, Issue 3, Pages 457–469
DOI: https://doi.org/10.4213/mzm12204
(Mi mzm12204)
 

This article is cited in 2 scientific papers (total in 2 papers)

Parseval Frames and the Discrete Walsh Transform

Yu. A. Farkov, M. G. Robakidze

Russian Academy of National Economy and Public Administration under the President of the Russian Federation, Moscow
Full-text PDF (505 kB) Citations (2)
References:
Abstract: Suppose that N=2n and N1=2n1, where n is a natural number. Denote by CN the space of complex N-periodic sequences with standard inner product. For any N-dimensional complex nonzero vector (b0,b1,,bN1) satisfying the condition
|bl|2+|bl+N1|22N2,l=0,1,,N11,
we find sequences u0,u1,,urCN such that the system of their binary shifts is a Parseval frame for CN. Moreover, the vector (b0,b1,,bN1) specifies the discrete Walsh transform of the sequence u0, and the choice of this vector makes it possible to adapt the proposed construction to the signal being processed according to the entropy, mean-square, or some other criterion.
Keywords: Walsh functions, discrete transforms, wavelets, frames, periodic sequences.
Received: 01.10.2018
Revised: 10.12.2018
English version:
Mathematical Notes, 2019, Volume 106, Issue 3, Pages 446–456
DOI: https://doi.org/10.1134/S0001434619090141
Bibliographic databases:
Document Type: Article
UDC: 517.518
PACS: 02.30.Lt
Language: Russian
Citation: Yu. A. Farkov, M. G. Robakidze, “Parseval Frames and the Discrete Walsh Transform”, Mat. Zametki, 106:3 (2019), 457–469; Math. Notes, 106:3 (2019), 446–456
Citation in format AMSBIB
\Bibitem{FarRob19}
\by Yu.~A.~Farkov, M.~G.~Robakidze
\paper Parseval Frames and the Discrete Walsh Transform
\jour Mat. Zametki
\yr 2019
\vol 106
\issue 3
\pages 457--469
\mathnet{http://mi.mathnet.ru/mzm12204}
\crossref{https://doi.org/10.4213/mzm12204}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4017560}
\elib{https://elibrary.ru/item.asp?id=41707688}
\transl
\jour Math. Notes
\yr 2019
\vol 106
\issue 3
\pages 446--456
\crossref{https://doi.org/10.1134/S0001434619090141}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000492034300014}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85074167614}
Linking options:
  • https://www.mathnet.ru/eng/mzm12204
  • https://doi.org/10.4213/mzm12204
  • https://www.mathnet.ru/eng/mzm/v106/i3/p457
  • This publication is cited in the following 2 articles:
    1. M. A. Skopina, Yu. A. Farkov, “Walsh-Type Functions on $M$-Positive Sets in $\mathbb R^d$”, Math. Notes, 111:4 (2022), 643–647  mathnet  crossref  crossref  mathscinet  zmath
    2. Yu. A. Farkov, “Freimy v analize Uolsha, matritsy Adamara i ravnomerno raspredelennye mnozhestva”, Materialy 20 Mezhdunarodnoi Saratovskoi zimnei shkoly «Sovremennye problemy teorii funktsii i ikh prilozheniya», Saratov, 28 yanvarya — 1 fevralya 2020 g.  Chast 1, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 199, VINITI RAN, M., 2021, 17–30  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:412
    Full-text PDF :52
    References:74
    First page:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025