Abstract:
Suppose that N=2n and N1=2n−1, where n is a natural number. Denote by CN the space of complex N-periodic sequences with standard inner product. For any N-dimensional complex nonzero vector (b0,b1,…,bN−1) satisfying the condition |bl|2+|bl+N1|2⩽2N2,l=0,1,…,N1−1, we find sequences u0,u1,…,ur∈CN such that the system of their binary shifts is a Parseval frame for CN. Moreover, the vector (b0,b1,…,bN−1) specifies the discrete Walsh transform of the sequence u0, and the choice of this vector makes it possible to adapt the proposed construction to the signal being processed according to the entropy, mean-square, or some other criterion.
Citation:
Yu. A. Farkov, M. G. Robakidze, “Parseval Frames and the Discrete Walsh Transform”, Mat. Zametki, 106:3 (2019), 457–469; Math. Notes, 106:3 (2019), 446–456
This publication is cited in the following 2 articles:
M. A. Skopina, Yu. A. Farkov, “Walsh-Type Functions on $M$-Positive Sets in $\mathbb R^d$”, Math. Notes, 111:4 (2022), 643–647
Yu. A. Farkov, “Freimy v analize Uolsha, matritsy Adamara i ravnomerno raspredelennye mnozhestva”, Materialy 20 Mezhdunarodnoi Saratovskoi zimnei shkoly «Sovremennye problemy teorii funktsii i ikh prilozheniya», Saratov, 28 yanvarya — 1 fevralya 2020 g. Chast 1, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 199, VINITI RAN, M., 2021, 17–30