Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2018, Volume 104, Issue 6, Pages 918–929
DOI: https://doi.org/10.4213/mzm12181
(Mi mzm12181)
 

This article is cited in 12 scientific papers (total in 12 papers)

On an Example of the Nikishin System

S. P. Suetin

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
References:
Abstract: An example of a Markov function f=const+ˆσf=const+ˆσ such that the three functions ff, f2f2, and f3f3 constitute a Nikishin system is given. It is conjectured that there exists a Markov function ff such that, for each nN, the system of f,f2,,fn is a Nikishin system.
Keywords: Hermite–Padé polynomials, Angelesco system, Nikishin system.
Funding agency Grant number
Russian Foundation for Basic Research 18-01-00764
This work was supported in part by the Russian Foundation for Basic Research under grant 18-01-00764.
Received: 05.09.2018
English version:
Mathematical Notes, 2018, Volume 104, Issue 6, Pages 905–914
DOI: https://doi.org/10.1134/S0001434618110342
Bibliographic databases:
Document Type: Article
UDC: 517.53
Language: Russian
Citation: S. P. Suetin, “On an Example of the Nikishin System”, Mat. Zametki, 104:6 (2018), 918–929; Math. Notes, 104:6 (2018), 905–914
Citation in format AMSBIB
\Bibitem{Sue18}
\by S.~P.~Suetin
\paper On an Example of the Nikishin System
\jour Mat. Zametki
\yr 2018
\vol 104
\issue 6
\pages 918--929
\mathnet{http://mi.mathnet.ru/mzm12181}
\crossref{https://doi.org/10.4213/mzm12181}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3881781}
\elib{https://elibrary.ru/item.asp?id=36448731}
\transl
\jour Math. Notes
\yr 2018
\vol 104
\issue 6
\pages 905--914
\crossref{https://doi.org/10.1134/S0001434618110342}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000454546800034}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85059232306}
Linking options:
  • https://www.mathnet.ru/eng/mzm12181
  • https://doi.org/10.4213/mzm12181
  • https://www.mathnet.ru/eng/mzm/v104/i6/p918
  • This publication is cited in the following 12 articles:
    1. S. P. Suetin, “O skalyarnykh podkhodakh k izucheniyu predelnogo raspredeleniya nulei mnogochlenov Ermita–Pade dlya sistemy Nikishina”, UMN, 80:1(481) (2025), 85–152  mathnet  crossref
    2. N. R. Ikonomov, S. P. Suetin, “On some potential-theoretic problems related to the asymptotics of Hermite–Padé polynomials”, Sb. Math., 215:8 (2024), 1053–1064  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    3. S. P. Suetin, “Convergence of Hermite–Padé rational approximations”, Russian Math. Surveys, 78:5 (2023), 967–969  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    4. S. P. Suetin, “Asymptotic properties of Hermite–Padé polynomials and Katz points”, Russian Math. Surveys, 77:6 (2022), 1149–1151  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    5. E. A. Rakhmanov, S. P. Suetin, “Approksimatsii Chebysheva–Pade dlya mnogoznachnykh funktsii”, Tr. MMO, 83, no. 2, MTsNMO, M., 2022, 319–344  mathnet
    6. N. R. Ikonomov, S. P. Suetin, “Struktura nattollovskogo razbieniya dlya nekotorogo klassa chetyrekhlistnykh rimanovykh poverkhnostei”, Tr. MMO, 83, no. 1, MTsNMO, M., 2022, 37–61  mathnet
    7. E. A. Rakhmanov, S. P. Suetin, “Chebyshev–Padé approximants for multivalued functions”, Trans. Moscow Math. Soc.,  mathnet  mathnet  crossref
    8. N. R. Ikonomov, S. P. Suetin, “Structure of the Nuttall partition for some class of four-sheeted Riemann surfaces”, Trans. Moscow Math. Soc., 2022,  mathnet  mathnet  crossref
    9. N. R. Ikonomov, S. P. Suetin, “Scalar Equilibrium Problem and the Limit Distribution of Zeros of Hermite–Padé Polynomials of Type II”, Proc. Steklov Inst. Math., 309 (2020), 159–182  mathnet  crossref  crossref  mathscinet  isi  elib
    10. S. P. Suetin, “Hermite–Padé polynomials and Shafer quadratic approximations for multivalued analytic functions”, Russian Math. Surveys, 75:4 (2020), 788–790  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    11. S. P. Suetin, “Existence of a three-sheeted Nutall surface for a certain class of infinite-valued analytic functions”, Russian Math. Surveys, 74:2 (2019), 363–365  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    12. S. P. Suetin, “Equivalence of a Scalar and a Vector Equilibrium Problem for a Pair of Functions Forming a Nikishin System”, Math. Notes, 106:6 (2019), 970–979  mathnet  crossref  crossref  mathscinet  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:506
    Full-text PDF :71
    References:59
    First page:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025