Loading [MathJax]/jax/output/SVG/config.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2020, Volume 107, Issue 1, Pages 87–105
DOI: https://doi.org/10.4213/mzm12146
(Mi mzm12146)
 

This article is cited in 17 scientific papers (total in 17 papers)

The Green Function of the Dirichlet Problem for the Triharmonic Equation in the Ball

V. V. Karachik

South Ural State University, Chelyabinsk
References:
Abstract: An explicit representation of the Green function of the Dirichlet problem for the triharmonic equation in the unit ball of space of dimension greater than 2 is given.
Keywords: Green function, triharmonic equation, Dirichlet problem.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 02.A03.21.0011
This work was supported by the Government of the Russian Federation (Decree no. 211 of March 16, 2013, grant no. 02.A03.21.0011).
Received: 15.08.2018
Revised: 24.01.2019
English version:
Mathematical Notes, 2020, Volume 107, Issue 1, Pages 105–120
DOI: https://doi.org/10.1134/S0001434620010101
Bibliographic databases:
Document Type: Article
UDC: 517.956.223+519.635.1
Language: Russian
Citation: V. V. Karachik, “The Green Function of the Dirichlet Problem for the Triharmonic Equation in the Ball”, Mat. Zametki, 107:1 (2020), 87–105; Math. Notes, 107:1 (2020), 105–120
Citation in format AMSBIB
\Bibitem{Kar20}
\by V.~V.~Karachik
\paper The Green Function of the Dirichlet Problem for the Triharmonic Equation in the Ball
\jour Mat. Zametki
\yr 2020
\vol 107
\issue 1
\pages 87--105
\mathnet{http://mi.mathnet.ru/mzm12146}
\crossref{https://doi.org/10.4213/mzm12146}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4045689}
\elib{https://elibrary.ru/item.asp?id=43246270}
\transl
\jour Math. Notes
\yr 2020
\vol 107
\issue 1
\pages 105--120
\crossref{https://doi.org/10.1134/S0001434620010101}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000519555100010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85080978417}
Linking options:
  • https://www.mathnet.ru/eng/mzm12146
  • https://doi.org/10.4213/mzm12146
  • https://www.mathnet.ru/eng/mzm/v107/i1/p87
  • This publication is cited in the following 17 articles:
    1. V. V. Karachik, “Green's function of one problem for the 3-harmonic equation in a ball”, Complex Variables and Elliptic Equations, 2025, 1  crossref
    2. V. V. Karachik, “Green's Function of the Riquier–Neumann Problem for the Polyharmonic Equation in the Unit Ball”, Comput. Math. and Math. Phys., 64:5 (2024), 1015  crossref
    3. V. V Karachik, “GREEN'S FUNCTION FOR THE RIEMANN–NEUMANN PROBLEM FOR A POLYHARMONIC EQUATION IN THE UNIT SPHERE”, Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, 64:5 (2024), 791  crossref
    4. Heinrich Begehr, “Green Functions for the Biharmonic Operator”, Lobachevskii J Math, 45:8 (2024), 3488  crossref
    5. V. Karachik, “Solvability of the Neumann Boundary Value Problem for the Polyharmonic Equation in a Ball”, Lobachevskii J Math, 45:8 (2024), 3559  crossref
    6. V. V. Karachik, “The Green function of the Navier problem for the polyharmonic equation in a ball”, J. Math. Sci., 269:2 (2023), 189  crossref  mathscinet
    7. V. Karachik, “Riquier–Neumann problem for the polyharmonic equation in a ball”, Mathematics, 11:4 (2023), 1000  crossref
    8. V. Karachik, “On Green's function of the Dirichlet problem for the polyharmonic equation in the ball”, Axioms, 12:6 (2023), 543  crossref
    9. V. V. Karachik, “On one integral representation of solutions of polyharmonic equation”, Lobachevskii J. Math., 44:7 (2023), 2749  crossref  mathscinet
    10. V. V. Karachik, “Representation of the Green's function of the Dirichlet problem for the polyharmonic equation in the ball”, Diff Equat, 59:8 (2023), 1061  crossref  crossref
    11. M. Akel, H. Begehr, A. Mohammed, “Integral representations in the complex plane and iterated boundary value problems”, Rocky Mountain J. Math., 52:2 (2022)  crossref  mathscinet
    12. V. Karachik, “Green's functions of some boundary value problems for the biharmonic equation”, Complex Variables and Elliptic Equations, 67:7 (2022), 1712  crossref  mathscinet
    13. V. V. Karachik, “Solution to the Dirichlet Problem for the Polyharmonic Equation in the Ball”, Sib. Adv. Math., 32:3 (2022), 197  crossref
    14. V. V. Karachik, “Reshenie zadachi Dirikhle dlya poligarmonicheskogo uravneniya v share”, Matem. tr., 24:2 (2021), 46–64  mathnet  crossref
    15. V. Karachik, “Dirichlet and Neumann boundary value problems for the polyharmonic equation in the unit ball”, Mathematics, 9:16 (2021), 1907  crossref  mathscinet  isi
    16. V. V. Karachik, “Green's functions of the Navier and Riquier-Neumann problems for the biharmonic equation in the ball”, Differ. Equ., 57:5 (2021), 654–668  crossref  mathscinet  isi
    17. V. V. Karachik, “Predstavlenie resheniya zadachi Dirikhle dlya bigarmonicheskogo uravneniya v share cherez funktsiyu Grina”, Chelyab. fiz.-matem. zhurn., 5:4(1) (2020), 391–399  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:499
    Full-text PDF :158
    References:73
    First page:33
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025