Processing math: 100%
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2019, Volume 106, Issue 3, Pages 387–394
DOI: https://doi.org/10.4213/mzm12099
(Mi mzm12099)
 

This article is cited in 2 scientific papers (total in 2 papers)

Systems of Representatives

K. D. Kovalenkoa, A. M. Raigorodskiibcde

a National Research University "Higher School of Economics", Moscow
b Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow region
c Adyghe State University, Maikop
d Lomonosov Moscow State University
e Buryat State University, Institute for Mathematics and Informatics, Ulan-Ude
Full-text PDF (460 kB) Citations (2)
References:
Abstract: Lower and upper bounds are obtained for the size ζ(n,r,s,k) of a minimum system of common representatives for a system of families of k-element sets. By ζ(n,r,s,k) we mean the maximum (over all systems Σ={M1,,Mr} of sets Mi consisting of at least s subsets of {1,,n} of cardinality not exceeding k) of the minimum size of a system of common representatives of Σ. The obtained results generalize previous estimates of ζ(n,r,s,1).
Keywords: systems of common representatives, minimum systems of common representatives.
Received: 28.06.2018
Revised: 27.12.2018
English version:
Mathematical Notes, 2019, Volume 106, Issue 3, Pages 372–377
DOI: https://doi.org/10.1134/S0001434619090062
Bibliographic databases:
Document Type: Article
UDC: 517
Language: Russian
Citation: K. D. Kovalenko, A. M. Raigorodskii, “Systems of Representatives”, Mat. Zametki, 106:3 (2019), 387–394; Math. Notes, 106:3 (2019), 372–377
Citation in format AMSBIB
\Bibitem{KovRai19}
\by K.~D.~Kovalenko, A.~M.~Raigorodskii
\paper Systems of Representatives
\jour Mat. Zametki
\yr 2019
\vol 106
\issue 3
\pages 387--394
\mathnet{http://mi.mathnet.ru/mzm12099}
\crossref{https://doi.org/10.4213/mzm12099}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4017554}
\elib{https://elibrary.ru/item.asp?id=41702905}
\transl
\jour Math. Notes
\yr 2019
\vol 106
\issue 3
\pages 372--377
\crossref{https://doi.org/10.1134/S0001434619090062}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000492034300006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85074101867}
Linking options:
  • https://www.mathnet.ru/eng/mzm12099
  • https://doi.org/10.4213/mzm12099
  • https://www.mathnet.ru/eng/mzm/v106/i3/p387
  • This publication is cited in the following 2 articles:
    1. M. Fadin, “Defect of an octahedron in a rational lattice”, Discret Appl. Math., 276:SI (2020), 37–43  crossref  mathscinet  zmath  isi  scopus
    2. M. A. Fadin, A. M. Raigorodskii, “Maximum defect of an admissible octahedron in a rational lattice”, Russian Math. Surveys, 74:3 (2019), 552–554  mathnet  mathnet  crossref  crossref  mathscinet  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:412
    Full-text PDF :101
    References:54
    First page:25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025