This work was supported
by the Russian Science Foundation
under grant 17-11-01041
and
by the Basic Research Program of the
National Research University Higher School of Economics
for the year 2018
(grant no. 95).
Citation:
V. Z. Grines, E. Ya. Gurevich, O. V. Pochinka, “A Combinatorial Invariant of Morse–Smale Diffeomorphisms without Heteroclinic Intersections on the Sphere Sn, n⩾4”, Mat. Zametki, 105:1 (2019), 136–141; Math. Notes, 105:1 (2019), 132–136
\Bibitem{GriGurPoc19}
\by V.~Z.~Grines, E.~Ya.~Gurevich, O.~V.~Pochinka
\paper A Combinatorial Invariant of Morse--Smale Diffeomorphisms without Heteroclinic Intersections on the Sphere~$S^n$, $n\ge 4$
\jour Mat. Zametki
\yr 2019
\vol 105
\issue 1
\pages 136--141
\mathnet{http://mi.mathnet.ru/mzm12098}
\crossref{https://doi.org/10.4213/mzm12098}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3894455}
\elib{https://elibrary.ru/item.asp?id=36603833}
\transl
\jour Math. Notes
\yr 2019
\vol 105
\issue 1
\pages 132--136
\crossref{https://doi.org/10.1134/S0001434619010140}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000464727500014}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85064243127}
Linking options:
https://www.mathnet.ru/eng/mzm12098
https://doi.org/10.4213/mzm12098
https://www.mathnet.ru/eng/mzm/v105/i1/p136
This publication is cited in the following 7 articles:
V. Z. Grines, E. Ya. Gurevich, “On classification of Morse–Smale flows on projective-like manifolds”, Izv. Math., 86:5 (2022), 876–902
Wenping Wei, Leipo Liu, “Dynamic model of language propagation in english translation based on differential equations”, Mathematical Problems in Engineering, 2022 (2022), 1
V. Z. Grines, E. Ya. Gurevich, V. S. Medvedev, “On Realization of Topological Conjugacy Classes of Morse–Smale Cascades on the Sphere $S^n$”, Proc. Steklov Inst. Math., 310 (2020), 108–123
Vladislav E. Kruglov, Dmitry S. Malyshev, Olga V. Pochinka, Danila D. Shubin, “On Topological Classification of Gradient-like Flows on an $n$-sphere in the Sense of Topological Conjugacy”, Regul. Chaotic Dyn., 25:6 (2020), 716–728
V. E. Kruglov, O. V. Pochinka, “Criterion for the Topological Conjugacy of Multi-Dimensional Gradient-Like Flows with No Heteroclinic Intersections on a Sphere”, J Math Sci, 250:1 (2020), 22
V. Z. Grines, E. Ya. Gurevich, E. V. Zhuzhoma, O. V. Pochinka, “Classification of Morse–Smale systems and topological structure of the underlying manifolds”, Russian Math. Surveys, 74:1 (2019), 37–110
Pochinka V O., Galkina S.Yu., Shubin D.D., “Modeling of Gradient-Like Flows on N-Sphere”, Izv. Vyss. Uchebn. Zaved.-Prikl. Nelineynaya Din., 27:6 (2019), 63–72