Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2018, Volume 103, Issue 5, paper published in the English version journal
DOI: https://doi.org/10.1134/S0001434618050139
(Mi mzm12018)
 

This article is cited in 15 scientific papers (total in 15 papers)

Papers published in the English version of the journal

The Jordan Property for Lie Groups and Automorphism Groups of Complex Spaces

V. L. Popov

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
Citations (15)
Abstract: We prove that the family of all connected n-dimensional real Lie groups is uniformly Jordan for every n. This implies that all algebraic (not necessarily affine) groups over fields of characteristic zero and some transformation groups of complex spaces and Riemannian manifolds are Jordan.
Keywords: Jordan group, bounded group, Lie group, algebraic group, automorphism group of complex space, isometry group of Riemannian manifold.
Funding agency Grant number
Russian Science Foundation 14-50-00005
This work was carried out at the Steklov Mathematical Institute and supported by the Russian Science Foundation under grant 14-50-00005.
Received: 03.04.2018
English version:
Mathematical Notes, 2018, Volume 103, Issue 5, Pages 811–819
DOI: https://doi.org/10.1134/S0001434618050139
Bibliographic databases:
Document Type: Article
Language: English
Citation: V. L. Popov, “The Jordan Property for Lie Groups and Automorphism Groups of Complex Spaces”, Math. Notes, 103:5 (2018), 811–819
Citation in format AMSBIB
\Bibitem{Pop18}
\by V.~L.~Popov
\paper The Jordan Property for Lie Groups
and Automorphism Groups of Complex Spaces
\jour Math. Notes
\yr 2018
\vol 103
\issue 5
\pages 811--819
\mathnet{http://mi.mathnet.ru/mzm12018}
\crossref{https://doi.org/10.1134/S0001434618050139}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3830471}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000436583800013}
\elib{https://elibrary.ru/item.asp?id=35745550}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85049137914}
Linking options:
  • https://www.mathnet.ru/eng/mzm12018
  • https://doi.org/10.1134/S0001434618050139
  • Related presentations:
    This publication is cited in the following 15 articles:
    1. Jin Hong Kim, “On the Existence of Equivariant Kähler Models of Certain Compact Complex Spaces”, Math. Notes, 115:4 (2024), 561–568  mathnet  mathnet  crossref
    2. Tatiana Bandman, Yuri G. Zarhin, “Jordan Groups and Geometric Properties of Manifolds”, Arnold Math J., 2024  crossref
    3. A. S. Golota, “Jordan property for groups of bimeromorphic automorphisms of compact Kähler threefolds”, Sb. Math., 214:1 (2023), 28–38  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    4. Russian Math. Surveys, 78:1 (2023), 1–64  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    5. A. S. Golota, “Finite groups acting on compact complex parallelizable manifolds”, Int. Math. Res. Not. IMRN, 2023, 1–24  mathnet  crossref  mathscinet  isi
    6. Yu. G. Prokhorov, С. A. Shramov, “Finite groups of bimeromorphic self-maps of nonuniruled Kähler threefolds”, Sb. Math., 213:12 (2022), 1695–1714  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    7. Sheng Meng, Fabio Perroni, De‐Qi Zhang, “Jordan property for automorphism groups of compact spaces in Fujiki's class C C”, Journal of Topology, 15:2 (2022), 806  crossref  mathscinet
    8. M. Sedano-Mendoza, “Isometry groups of generalized stiefel manifolds”, Transformation Groups, 27:4 (2022), 1533  crossref  mathscinet
    9. Jin Hong Kim, “Strongly Jordan property and free actions of non-abelian free groups”, Proceedings of the Edinburgh Mathematical Society, 65:3 (2022), 736  crossref  mathscinet
    10. Bandman T., Zarhin Yu.G., “Bimeromorphic Automorphism Groups of Certain P-1-Bundles”, Eur. J. Math., 7:2 (2021), 641–670  crossref  mathscinet  isi
    11. Yu. Prokhorov, C. Shramov, “Automorphism groups of compact complex surfaces”, Int. Math. Res. Notices, 2021:14 (2021), 10490–10520  crossref  mathscinet  isi
    12. Mundet i Riera I., “Isometry Groups of Closed Lorentz 4-Manifolds Are Jordan”, Geod. Dedic., 207:1 (2020), 201–207  crossref  mathscinet  isi  scopus
    13. S. Kebekus, “Boundedness results for singular fano varieties, and applications to cremona groups [following birkar and prokhorov-shramov]”, Asterisque, 2020, no. 422, 253–290  crossref  mathscinet  isi
    14. Yuri G. Zarhin, “Complex Tori, Theta Groups and Their Jordan Properties”, Proc. Steklov Inst. Math., 307 (2019), 22–50  mathnet  crossref  crossref  mathscinet  isi  elib
    15. Mundet i Riera I., “Finite group actions on homology spheres and manifolds with nonzero Euler characteristic”, J. Topol., 12:3 (2019), 744–758  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:291
    Full-text PDF :1
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025