Abstract:
We give the solution of the Turán, Fejér, Delsarte, Logan, and Bohman
extremal problems for the Fourier transform on the hyperboloid
$\mathbb{H}^{d}$
or Lobachevsky space.
We apply the averaging function method over the sphere
and the solution of these problems for the Jacobi transform on the
half-line.
Citation:
D. V. Gorbachev, V. I. Ivanov, O. I. Smirnov, “Some Extremal Problems for the Fourier Transform
on the Hyperboloid”, Math. Notes, 102:4 (2017), 480–491
\Bibitem{GorIvaSmi17}
\by D.~V.~Gorbachev, V.~I.~Ivanov, O.~I.~Smirnov
\paper Some Extremal Problems for the Fourier Transform
on the Hyperboloid
\jour Math. Notes
\yr 2017
\vol 102
\issue 4
\pages 480--491
\mathnet{http://mi.mathnet.ru/mzm11836}
\crossref{https://doi.org/10.1134/S0001434617090206}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000413455100020}
\elib{https://elibrary.ru/item.asp?id=31091495}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85032030021}
Linking options:
https://www.mathnet.ru/eng/mzm11836
This publication is cited in the following 4 articles:
Dmitry Gorbachev, Valerii Ivanov, Sergey Tikhonov, “Logan's problem for Jacobi transforms”, Can. J. Math.-J. Can. Math., 2023, 1
D. V. Gorbachev, V. I. Ivanov, “Turán, Fejér and Bohman extremal problems for the multivariate Fourier transform in terms of the eigenfunctions of a Sturm-Liouville problem”, Sb. Math., 210:6 (2019), 809–835
D. V. Gorbachev, V. I. Ivanov, E. P. Ofitserov, O. I. Smirnov, “Vtoraya ekstremalnaya zadacha Logana dlya preobrazovaniya Fure po sobstvennym funktsiyam operatora Shturma–Liuvillya”, Chebyshevskii sb., 19:1 (2018), 57–78
D. V. Gorbachev, V. I. Ivanov, E. P. Ofitserov, O. I. Smirnov, “Nekotorye ekstremalnye zadachi garmonicheskogo analiza i teorii priblizhenii”, Chebyshevskii sb., 18:4 (2017), 140–167