Processing math: 100%
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2017, Volume 102, Issue 5, Pages 657–672
DOI: https://doi.org/10.4213/mzm11738
(Mi mzm11738)
 

This article is cited in 1 scientific paper (total in 1 paper)

Almost-Periodic Algebras and Their Automorphisms

A. B. Antonevicha, A. N. Buzulutskaya (Glaz)b

a University of Bialystok
b Belarusian State University
Full-text PDF (541 kB) Citations (1)
References:
Abstract: The problem concerning the form of the maximal ideal space of an almost-periodic algebra formed by functions on Rm is considered. It is shown that this space is homeomorphic to the topological group dual to the group of frequencies of the algebra under consideration. In the case of a quasiperiodic algebra, the mappings of Rn generating automorphisms of the algebra are described. Several specific examples are given and a relation to the theory of quasicrystals is indicated.
Keywords: maximal ideal space, almost-periodic algebra, dual group, automorphism, quasicrystal.
Received: 25.06.2017
English version:
Mathematical Notes, 2017, Volume 102, Issue 5, Pages 610–622
DOI: https://doi.org/10.1134/S0001434617110025
Bibliographic databases:
Document Type: Article
UDC: 517.986
Language: Russian
Citation: A. B. Antonevich, A. N. Buzulutskaya (Glaz), “Almost-Periodic Algebras and Their Automorphisms”, Mat. Zametki, 102:5 (2017), 657–672; Math. Notes, 102:5 (2017), 610–622
Citation in format AMSBIB
\Bibitem{AntBuz17}
\by A.~B.~Antonevich, A.~N.~Buzulutskaya (Glaz)
\paper Almost-Periodic Algebras and Their Automorphisms
\jour Mat. Zametki
\yr 2017
\vol 102
\issue 5
\pages 657--672
\mathnet{http://mi.mathnet.ru/mzm11738}
\crossref{https://doi.org/10.4213/mzm11738}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3716502}
\elib{https://elibrary.ru/item.asp?id=30512309}
\transl
\jour Math. Notes
\yr 2017
\vol 102
\issue 5
\pages 610--622
\crossref{https://doi.org/10.1134/S0001434617110025}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000418838500002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85039428968}
Linking options:
  • https://www.mathnet.ru/eng/mzm11738
  • https://doi.org/10.4213/mzm11738
  • https://www.mathnet.ru/eng/mzm/v102/i5/p657
  • This publication is cited in the following 1 articles:
    1. M. V. Makarova, I. A. Kovalew, D. W. Serow, “Structurally stable symmetric tilings on the plane”, Nonlinear Phenom. Complex Syst., 24:2 (2021), 156–165  crossref  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:448
    Full-text PDF :72
    References:69
    First page:32
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025