Abstract:
We present a necessary and sufficient condition for the series of absolute values of blocks of Fourier series elements and blocks of series of summands in Parseval's identity to converge in the class of two-variable functions of bounded variation in the sense of Hardy.
Keywords:
functions of bounded variation in two variables, Fourier coefficients, Parseval's identity.
Citation:
S. A. Telyakovskii, “On the Convergence of Block Fourier Series of Functions of Bounded Variation in Two Variables”, Mat. Zametki, 103:4 (2018), 604–608; Math. Notes, 103:4 (2018), 645–648
\Bibitem{Tel18}
\by S.~A.~Telyakovskii
\paper On the Convergence of Block Fourier Series of Functions of Bounded Variation in Two Variables
\jour Mat. Zametki
\yr 2018
\vol 103
\issue 4
\pages 604--608
\mathnet{http://mi.mathnet.ru/mzm11697}
\crossref{https://doi.org/10.4213/mzm11697}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3780063}
\elib{https://elibrary.ru/item.asp?id=32641353}
\transl
\jour Math. Notes
\yr 2018
\vol 103
\issue 4
\pages 645--648
\crossref{https://doi.org/10.1134/S000143461803032X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000430553100032}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85046341312}
Linking options:
https://www.mathnet.ru/eng/mzm11697
https://doi.org/10.4213/mzm11697
https://www.mathnet.ru/eng/mzm/v103/i4/p604
This publication is cited in the following 1 articles:
Wang H. Chen Zh. Huang J., “A Novel Method For High-Frequency Non-Sinusoidal Vibration Waveforms With Uniaxial Electro-Hydraulic Shaking Table Based on Fourier Series”, J. Vib. Control, 27:21-22 (2021), 1077546320961719, 2466–2481