Loading [MathJax]/jax/output/CommonHTML/jax.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2018, Volume 103, Issue 4, Pages 519–535
DOI: https://doi.org/10.4213/mzm11563
(Mi mzm11563)
 

This article is cited in 3 scientific papers (total in 3 papers)

Positive Definiteness of Complex Piecewise Linear Functions and Some of Its Applications

V. P. Zastavnyi, A. Manov

Donetsk National University
Full-text PDF (587 kB) Citations (3)
References:
Abstract: Given α(0,1) and c=h+iβ, h,βR, the function fα,c:RC defined as follows is considered: (1) fα,c is Hermitian, i.e., fα,c(x)=¯fα,c(x), xR; (2) fα,c(x)=0 for x>1; moreover, on each of the closed intervals [0,α] and [α,1], the function fα,c is linear and satisfies the conditions fα,c(0)=1, fα,c(α)=c, and fα,c(1)=0. It is proved that the complex piecewise linear function fα,c is positive definite on R if and only if
m(α)h1αand|β|γ(α,h),
where
m(α)={0if 1/αN,αif 1/αN.
If m(α)<h<1α and αQ, then γ(α,h)>0; otherwise, γ(α,h)=0. This result is used to obtain a criterion for the complete monotonicity of functions of a special form and prove a sharp inequality for trigonometric polynomials.
Keywords: positive definite function, piecewise linear function, completely monotone function, Bochner–Khinchine theorem, Bernstein's inequality.
Received: 22.02.2017
Revised: 23.05.2017
English version:
Mathematical Notes, 2018, Volume 103, Issue 4, Pages 550–564
DOI: https://doi.org/10.1134/S0001434618030227
Bibliographic databases:
Document Type: Article
UDC: 517.5+519.213
Language: Russian
Citation: V. P. Zastavnyi, A. Manov, “Positive Definiteness of Complex Piecewise Linear Functions and Some of Its Applications”, Mat. Zametki, 103:4 (2018), 519–535; Math. Notes, 103:4 (2018), 550–564
Citation in format AMSBIB
\Bibitem{ZasMan18}
\by V.~P.~Zastavnyi, A.~Manov
\paper Positive Definiteness of Complex Piecewise Linear Functions and Some of Its Applications
\jour Mat. Zametki
\yr 2018
\vol 103
\issue 4
\pages 519--535
\mathnet{http://mi.mathnet.ru/mzm11563}
\crossref{https://doi.org/10.4213/mzm11563}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3780055}
\elib{https://elibrary.ru/item.asp?id=32641340}
\transl
\jour Math. Notes
\yr 2018
\vol 103
\issue 4
\pages 550--564
\crossref{https://doi.org/10.1134/S0001434618030227}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000430553100022}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85046355945}
Linking options:
  • https://www.mathnet.ru/eng/mzm11563
  • https://doi.org/10.4213/mzm11563
  • https://www.mathnet.ru/eng/mzm/v103/i4/p519
  • This publication is cited in the following 3 articles:
    1. V. P. Zastavnyi, “Ob ekstremalnykh trigonometricheskikh polinomakh”, Tr. IMM UrO RAN, 29, no. 4, 2023, 70–91  mathnet  crossref  elib
    2. D. V. Gorbachev, “Tochnye neravenstva Bernshteina — Nikolskogo dlya polinomov i tselykh funktsii eksponentsialnogo tipa”, Chebyshevskii sb., 22:5 (2021), 58–110  mathnet  crossref
    3. A. Manov, “Positive definiteness of piecewise-linear function 2”, Oper. Matrices, 14:1 (2020), 9–22  crossref  mathscinet  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:485
    Full-text PDF :61
    References:57
    First page:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025