Abstract:
We develop the recent research [1] and introduce the notions of volume and entropy in abstract analytic number theory. The introduction of negative numbers in the generalized partition problem, together with the meaning of such a generalization in some applications of the theory, is discussed.
Keywords:
number theory, thermodynamics, statistical physics, volume, entropy.
Funding agency
This research was carried out at Ishlinsky Institute for Problems
in Mechanics, Russian Academy of Sciences, in the framework of the
state contract “Modeling of processes in mechanics of natural
hazards, mechanics of continuum, and quantum mechanics with the use
of asymptotic and analytical-numerical methods.”
Citation:
V. P. Maslov, S. Yu. Dobrokhotov, V. E. Nazaikinskii, “Volume and Entropy in Abstract Analytic Number Theory and Thermodynamics”, Mat. Zametki, 100:6 (2016), 855–867; Math. Notes, 100:6 (2016), 828–834
\Bibitem{MasDobNaz16}
\by V.~P.~Maslov, S.~Yu.~Dobrokhotov, V.~E.~Nazaikinskii
\paper Volume and Entropy in Abstract Analytic Number Theory and Thermodynamics
\jour Mat. Zametki
\yr 2016
\vol 100
\issue 6
\pages 855--867
\mathnet{http://mi.mathnet.ru/mzm11453}
\crossref{https://doi.org/10.4213/mzm11453}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3588910}
\elib{https://elibrary.ru/item.asp?id=27484943}
\transl
\jour Math. Notes
\yr 2016
\vol 100
\issue 6
\pages 828--834
\crossref{https://doi.org/10.1134/S0001434616110225}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000391490500022}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85007124083}
Linking options:
https://www.mathnet.ru/eng/mzm11453
https://doi.org/10.4213/mzm11453
https://www.mathnet.ru/eng/mzm/v100/i6/p855
This publication is cited in the following 4 articles:
V. P. Maslov, “Rotation of a Neutron in the Coat of Helium-5
as a Classical Particle for a Relatively Large Value
of the Hidden Parameter
$t_{\mathrm{meas}}$”, Math. Notes, 103:1 (2018), 67–74
V. P. Maslov, T. V. Maslova, “A generalized number theory problem applied to ideal liquids and to terminological lexis”, Russ. J. Math. Phys., 24:1 (2017), 96–110
V. P. Maslov, “A model of classical thermodynamics and mesoscopic physics based on the notion of hidden parameter, earth gravitation, and quasiclassical asymptotics. II”, Russ. J. Math. Phys., 24:4 (2017), 494–504
V. P. Maslov, “Two First Principles of Earth Surface Thermodynamics.
Mesoscopy, Energy Accumulation, and the Branch Point
in Boson–Fermion Transition”, Math. Notes, 102:6 (2017), 824–835