Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2017, Volume 101, Issue 1, Pages 58–76
DOI: https://doi.org/10.4213/mzm11039
(Mi mzm11039)
 

This article is cited in 12 scientific papers (total in 12 papers)

Existence and Stability of the Relaxation Cycle in a Mathematical Repressilator Model

S. D. Glyzina, A. Yu. Kolesova, N. Kh. Rozovb

a P.G. Demidov Yaroslavl State University
b Lomonosov Moscow State University
References:
Abstract: The three-dimensional nonlinear system of ordinary differential equations modeling the functioning of the simplest oscillatory genetic network, the so-called repressilator, is considered. The existence, asymptotics, and stability of the relaxation periodic motion in this system are studied.
Keywords: repressilator, genetic oscillator, relaxation cycle, stability, asymptotics.
Funding agency Grant number
Russian Foundation for Basic Research 15-01-04066а
Received: 07.12.2015
Revised: 05.03.2016
English version:
Mathematical Notes, 2017, Volume 101, Issue 1, Pages 71–86
DOI: https://doi.org/10.1134/S0001434617010072
Bibliographic databases:
Document Type: Article
UDC: 517.926
Language: Russian
Citation: S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Existence and Stability of the Relaxation Cycle in a Mathematical Repressilator Model”, Mat. Zametki, 101:1 (2017), 58–76; Math. Notes, 101:1 (2017), 71–86
Citation in format AMSBIB
\Bibitem{GlyKolRoz17}
\by S.~D.~Glyzin, A.~Yu.~Kolesov, N.~Kh.~Rozov
\paper Existence and Stability of the Relaxation Cycle in a Mathematical Repressilator Model
\jour Mat. Zametki
\yr 2017
\vol 101
\issue 1
\pages 58--76
\mathnet{http://mi.mathnet.ru/mzm11039}
\crossref{https://doi.org/10.4213/mzm11039}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3598751}
\elib{https://elibrary.ru/item.asp?id=28172125}
\transl
\jour Math. Notes
\yr 2017
\vol 101
\issue 1
\pages 71--86
\crossref{https://doi.org/10.1134/S0001434617010072}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000396392700007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85015620951}
Linking options:
  • https://www.mathnet.ru/eng/mzm11039
  • https://doi.org/10.4213/mzm11039
  • https://www.mathnet.ru/eng/mzm/v101/i1/p58
  • This publication is cited in the following 12 articles:
    1. V. P. Golubyatnikov, E. A. Tatarinova, “Mathematical and Numerical Modeling of the Pluripotency Gene Network Dynamics”, Numer. Analys. Appl., 18:1 (2025), 36  crossref
    2. V. P. Golubyatnikov, “O needinstvennosti tsiklov v trekhmernykh modelyakh koltsevykh gennykh setei”, Chelyab. fiz.-matem. zhurn., 9:1 (2024), 23–34  mathnet  crossref
    3. A. V. Glubokikh, V. P. Golubyatnikov, “On nonlocal oscillations in 3D models of circular gene networks”, J. Appl. Industr. Math., 18:2 (2024), 246–252  mathnet  crossref  crossref
    4. S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “On a mathematical model of the repressilator”, St. Petersburg Math. J., 33:5 (2022), 797–828  mathnet  crossref
    5. S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “A new approach to gene network modeling”, Autom. Control Comp. Sci., 54:7 (2020), 655–684  crossref  mathscinet  isi  scopus
    6. S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Quasi-stable solutions of the genetic networks models”, International Conference on Computer Simulation in Physics and Beyond, Journal of Physics Conference Series, 1163, ed. L. Shchur, IOP Publishing Ltd, 2019, UNSP 012070  crossref  isi
    7. S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Novyi podkhod k modelirovaniyu gennykh setei”, Model. i analiz inform. sistem, 26:3 (2019), 365–404  mathnet  crossref
    8. Z. Liu, X. Zhang, X. Wang, “Global exponential stability of delayed coupled repressilators in artificial oscillatory networks”, 2019 IEEE 58Th Conference on Decision and Control (Cdc), IEEE Conference on Decision and Control, IEEE, 2019, 1907–1912  isi
    9. Zexing Liu, Xian Zhang, Xin Wang, 2019 IEEE 58th Conference on Decision and Control (CDC), 2019, 1907  crossref
    10. S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Quasi-stable structures in circular gene networks”, Comput. Math. Math. Phys., 58:5 (2018), 659–679  mathnet  crossref  crossref  isi  elib
    11. V. P. Golubyatnikov, V. V. Ivanov, “Edinstvennost i ustoichivost tsikla v trekhmernykh blochno-lineinykh modelyakh koltsevykh gennykh setei”, Sib. zhurn. chist. i prikl. matem., 18:4 (2018), 19–28  mathnet  crossref
    12. V. P. Golubyatnikov, N. E. Kirillova, “On cycles in models of functioning of circular gene networks”, J. Math. Sci., 246:6 (2020), 779–787  mathnet  crossref  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:604
    Full-text PDF :75
    References:75
    First page:28
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025