Abstract:
The three-dimensional nonlinear system of ordinary differential equations modeling the functioning of the simplest oscillatory genetic network, the so-called repressilator, is considered. The existence, asymptotics, and stability of the relaxation periodic motion in this system are studied.
Citation:
S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Existence and Stability of the Relaxation Cycle in a Mathematical Repressilator Model”, Mat. Zametki, 101:1 (2017), 58–76; Math. Notes, 101:1 (2017), 71–86
\Bibitem{GlyKolRoz17}
\by S.~D.~Glyzin, A.~Yu.~Kolesov, N.~Kh.~Rozov
\paper Existence and Stability of the Relaxation Cycle in a Mathematical Repressilator Model
\jour Mat. Zametki
\yr 2017
\vol 101
\issue 1
\pages 58--76
\mathnet{http://mi.mathnet.ru/mzm11039}
\crossref{https://doi.org/10.4213/mzm11039}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3598751}
\elib{https://elibrary.ru/item.asp?id=28172125}
\transl
\jour Math. Notes
\yr 2017
\vol 101
\issue 1
\pages 71--86
\crossref{https://doi.org/10.1134/S0001434617010072}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000396392700007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85015620951}
Linking options:
https://www.mathnet.ru/eng/mzm11039
https://doi.org/10.4213/mzm11039
https://www.mathnet.ru/eng/mzm/v101/i1/p58
This publication is cited in the following 12 articles:
V. P. Golubyatnikov, E. A. Tatarinova, “Mathematical and Numerical Modeling of the Pluripotency Gene Network Dynamics”, Numer. Analys. Appl., 18:1 (2025), 36
V. P. Golubyatnikov, “O needinstvennosti tsiklov v trekhmernykh modelyakh koltsevykh gennykh setei”, Chelyab. fiz.-matem. zhurn., 9:1 (2024), 23–34
A. V. Glubokikh, V. P. Golubyatnikov, “On nonlocal oscillations in 3D models of circular gene networks”, J. Appl. Industr. Math., 18:2 (2024), 246–252
S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “On a mathematical model of the repressilator”, St. Petersburg Math. J., 33:5 (2022), 797–828
S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “A new approach to gene network modeling”, Autom. Control Comp. Sci., 54:7 (2020), 655–684
S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Quasi-stable solutions of the genetic networks models”, International Conference on Computer Simulation in Physics and Beyond, Journal of Physics Conference Series, 1163, ed. L. Shchur, IOP Publishing Ltd, 2019, UNSP 012070
S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Novyi podkhod k modelirovaniyu gennykh setei”, Model. i analiz inform. sistem, 26:3 (2019), 365–404
Z. Liu, X. Zhang, X. Wang, “Global exponential stability of delayed coupled repressilators in artificial oscillatory networks”, 2019 IEEE 58Th Conference on Decision and Control (Cdc), IEEE Conference on Decision and Control, IEEE, 2019, 1907–1912
Zexing Liu, Xian Zhang, Xin Wang, 2019 IEEE 58th Conference on Decision and Control (CDC), 2019, 1907
S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Quasi-stable structures in circular gene networks”, Comput. Math. Math. Phys., 58:5 (2018), 659–679
V. P. Golubyatnikov, V. V. Ivanov, “Edinstvennost i ustoichivost tsikla v trekhmernykh blochno-lineinykh modelyakh koltsevykh gennykh setei”, Sib. zhurn. chist. i prikl. matem., 18:4 (2018), 19–28
V. P. Golubyatnikov, N. E. Kirillova, “On cycles in models of functioning of circular gene networks”, J. Math. Sci., 246:6 (2020), 779–787