Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2015, Volume 97, Issue 4, paper published in the English version journal (Mi mzm10921)  

This article is cited in 3 scientific papers (total in 3 papers)

Papers published in the English version of the journal

On the Semiclassical Transition in the Quantum Gibbs Distribution

V. P. Maslovab

a National Research University Higher School of Economics, Moscow, Russia
b Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences, Moscow, Russia
Citations (3)
Abstract: An example of a Gibbs ensemble for a system of N Brownian particles is given, and the relation with Kolmogorov complexity is considered. The irreversibility of the process is analyzed and shown to be a consequence of the loss of numbering of the particles. The dependence of the measure in the semiclassical Gibbs distribution on temperature is studied in examples.
Keywords: Gibbs ensemble, Kolmogorov complexity, Brownian particle, quasistatic process, reversibility, number of degrees of freedom, negative dimension.
Received: 21.01.2015
English version:
Mathematical Notes, 2015, Volume 97, Issue 4, Pages 565–574
DOI: https://doi.org/10.1134/S000143461503027X
Bibliographic databases:
Document Type: Article
Language: English
Linking options:
  • https://www.mathnet.ru/eng/mzm10921
  • This publication is cited in the following 3 articles:
    1. Maslov V.P., “Locally Ideal Liquid”, Russ. J. Math. Phys., 22:3 (2015), 361–373  crossref  mathscinet  zmath  isi  elib  scopus
    2. Maslov V.P., “Van der Waals Equation From the Viewpoint of Probability Distribution and the Triple Point as the Critical Point of the Liquid-To-Solid Transition”, Russ. J. Math. Phys., 22:2 (2015), 188–200  crossref  mathscinet  zmath  isi  elib  scopus
    3. V. P. Maslov, “Probability Distribution for a Hard Liquid”, Math. Notes, 97:6 (2015), 909–918  mathnet  mathnet  crossref  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:154
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025