Abstract:
We introduce a number of notions related to the Lyapunov transformation of linear differential operators with unbounded operator coefficients generated by a family of evolution operators. We prove statements about similar operators related to the Lyapunov transformation and describe their spectral properties. One of the main results of the paper is a similarity theorem for a perturbed differential operator with constant operator coefficient, an operator which is the generator of a bounded group of operators. For the perturbation, we consider the operator of multiplication by a summable operator function. The almost periodicity (at infinity) of the solutions of the corresponding homogeneous differential equation is established.
This publication is cited in the following 2 articles:
G Garkavenko, N Uskova, “Spectral analysis of one class perturbed first order differential operators”, J. Phys.: Conf. Ser., 1902:1 (2021), 012035
M. S. Bichegkuev, “Almost periodic at infinity solutions to integro-differential equations with non-invertible operator at derivative”, Ufa Math. J., 12:1 (2020), 3–12