Abstract:
The paper deals with conditions under which the Green function of a multipoint boundary-value problem for fourth-order equations describing small strains of a rod fastened to a solid elastic basement and additionally fixed by “concentrated” elastic supports at separate points has the oscillation property. It is shown that the condition that the Green function is positive is necessary and sufficient for the Green function to have the oscillation property.
Keywords:
fourth-order boundary-value problem, Green function, the oscillation property, oscillation theorem, sign regularity.
Citation:
R. Ch. Kulaev, “On the Oscillation Property of Green's Function of a Fourth-Order Discontinuous Boundary-Value Problem”, Mat. Zametki, 100:3 (2016), 375–387; Math. Notes, 100:3 (2016), 391–402
\Bibitem{Kul16}
\by R.~Ch.~Kulaev
\paper On the Oscillation Property of Green's Function of a Fourth-Order Discontinuous Boundary-Value Problem
\jour Mat. Zametki
\yr 2016
\vol 100
\issue 3
\pages 375--387
\mathnet{http://mi.mathnet.ru/mzm10744}
\crossref{https://doi.org/10.4213/mzm10744}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3588856}
\elib{https://elibrary.ru/item.asp?id=26604146}
\transl
\jour Math. Notes
\yr 2016
\vol 100
\issue 3
\pages 391--402
\crossref{https://doi.org/10.1134/S0001434616090054}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000386774200005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84992092109}
Linking options:
https://www.mathnet.ru/eng/mzm10744
https://doi.org/10.4213/mzm10744
https://www.mathnet.ru/eng/mzm/v100/i3/p375
This publication is cited in the following 7 articles:
A. A. Vladimirov, A. A. Shkalikov, “Oscillatory properties of selfadjoint boundary value problems of the fourth order”, St. Petersburg Math. J., 35:1 (2024), 83–100
R. Ch. Kulaev, A. A. Urtaeva, “Sturm Separation Theorems for a Fourth-Order Equation on a Graph”, Math. Notes, 111:6 (2022), 977–981
M. B. Zvereva, “Model deformatsii sistemy stiltesovskikh strun s nelineinym usloviem”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 32:4 (2022), 528–545
P. Almenar, L. Jodar, “Accurate estimations of any eigenpairs of n-th order linear boundary value problems”, Mathematics, 9:21 (2021), 2663
S. Faydaoglu, “An expansion result for the equation of transverse vibration of two-layered composite”, International Conference on Analysis and Applied Mathematics (ICAAM 2018), AIP Conf. Proc., 1997, Amer. Inst. Physics, 2018, UNSP 020015-1
R. Ch. Kulaev, “K voprosu o neostsillyatsii differentsialnogo uravneniya na grafe”, Vladikavk. matem. zhurn., 19:3 (2017), 31–40
A. A. Vladimirov, “On the Problem of Oscillation Properties of Positive Differential Operators with Singular Coefficients”, Math. Notes, 100:6 (2016), 790–795