Loading [MathJax]/jax/output/SVG/config.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2012, Volume 92, Issue 6, Pages 912–927
DOI: https://doi.org/10.4213/mzm10150
(Mi mzm10150)
 

Local Finitely Smooth Equivalence of Real Autonomous Systems with Two Pure Imaginary Eigenvalues

V. S. Samovol

National Research University "Higher School of Economics"
References:
Abstract: The paper deals with real autonomous systems of ordinary differential equations in a neighborhood of a nondegenerate singular point such that the matrix of the linearized system has two pure imaginary eigenvalues, all other eigenvalues lying outside the imaginary axis. It is proved that, for such systems having a focus on the center manifold, the problem of finitely smooth equivalence is solved in terms of the finite segments of the Taylor series of their right-hand sides.
Keywords: autonomous system of ordinary differential equations, finitely smooth equivalence of systems, pseudonormal form, resonance, shearing transformation.
Received: 06.10.2011
English version:
Mathematical Notes, 2012, Volume 92, Issue 6, Pages 807–819
DOI: https://doi.org/10.1134/S0001434612110260
Bibliographic databases:
Document Type: Article
UDC: 517.91
Language: Russian
Citation: V. S. Samovol, “Local Finitely Smooth Equivalence of Real Autonomous Systems with Two Pure Imaginary Eigenvalues”, Mat. Zametki, 92:6 (2012), 912–927; Math. Notes, 92:6 (2012), 807–819
Citation in format AMSBIB
\Bibitem{Sam12}
\by V.~S.~Samovol
\paper Local Finitely Smooth Equivalence of Real Autonomous Systems with Two Pure Imaginary Eigenvalues
\jour Mat. Zametki
\yr 2012
\vol 92
\issue 6
\pages 912--927
\mathnet{http://mi.mathnet.ru/mzm10150}
\crossref{https://doi.org/10.4213/mzm10150}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3201492}
\zmath{https://zbmath.org/?q=an:06153815}
\elib{https://elibrary.ru/item.asp?id=20731650}
\transl
\jour Math. Notes
\yr 2012
\vol 92
\issue 6
\pages 807--819
\crossref{https://doi.org/10.1134/S0001434612110260}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000314263900026}
\elib{https://elibrary.ru/item.asp?id=20484590}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84871840423}
Linking options:
  • https://www.mathnet.ru/eng/mzm10150
  • https://doi.org/10.4213/mzm10150
  • https://www.mathnet.ru/eng/mzm/v92/i6/p912
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:437
    Full-text PDF :215
    References:66
    First page:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025