Processing math: 100%
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1978, Volume 23, Issue 5, Pages 759–772 (Mi mzm10005)  

This article is cited in 9 scientific papers (total in 9 papers)

Two-dimensional modal logic

V. B. Shekhtman

Moscow State Pedagogical Institute
Abstract: Propositional logics with many modalites, characterized by “two-dimensional” Kripke models, are investigated. The general problem can be formulated as follows: from two modal logics describing certain classes of Kripke modal lattices construct a logic describing all products of Kripke lattices from these classes. For a large number of cases such a logic is obtained by joining to the original logics an axiom of the form ijpjip and ijpjip. A special case of this problem, leading to the logic of a torus S5×S5 was solved by Segerberg [1].
Received: 13.02.1975
English version:
Mathematical Notes, 1978, Volume 23, Issue 5, Pages 417–424
DOI: https://doi.org/10.1007/BF01789012
Bibliographic databases:
Document Type: Article
UDC: 517.11
Language: Russian
Citation: V. B. Shekhtman, “Two-dimensional modal logic”, Mat. Zametki, 23:5 (1978), 759–772; Math. Notes, 23:5 (1978), 417–424
Citation in format AMSBIB
\Bibitem{She78}
\by V.~B.~Shekhtman
\paper Two-dimensional modal logic
\jour Mat. Zametki
\yr 1978
\vol 23
\issue 5
\pages 759--772
\mathnet{http://mi.mathnet.ru/mzm10005}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=485217}
\zmath{https://zbmath.org/?q=an:0403.03015|0384.03010}
\transl
\jour Math. Notes
\yr 1978
\vol 23
\issue 5
\pages 417--424
\crossref{https://doi.org/10.1007/BF01789012}
Linking options:
  • https://www.mathnet.ru/eng/mzm10005
  • https://www.mathnet.ru/eng/mzm/v23/i5/p759
  • This publication is cited in the following 9 articles:
    1. V. B. Shehtman, D. P. Shkatov, “Semiproducts, products, and modal predicate logics: some examples”, Dokl. Math., 108:2 (2023), 411–418  mathnet  crossref  crossref  mathscinet  elib
    2. Valentin Shehtman, Outstanding Contributions to Logic, 15, Larisa Maksimova on Implication, Interpolation, and Definability, 2018, 245  crossref
    3. Andrey Kudinov, “On neighbourhood product of some Horn axiomatizable logics”, Log. J. IGPL, 26:3 (2018), 316–338  mathnet  crossref  isi  scopus
    4. Philip Kremer, “The Incompleteness of S4 ${\bigoplus}$ ⨁ S4 for the Product Space”, Stud Logica, 103:1 (2015), 219  crossref
    5. Yin Wu, Min Jiang, Zhongqiang Huang, Fei Chao, Changle Zhou, “An NP-complete fragment of fibring logic”, Ann Math Artif Intell, 75:3-4 (2015), 391  crossref
    6. V. B. Shehtman, “Squares of modal logics with additional connectives”, Russian Math. Surveys, 67:4 (2012), 721–777  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    7. V. B. Shehtman, “On squares of modal logics with additional connectives”, Proc. Steklov Inst. Math., 274 (2011), 317–325  mathnet  crossref  mathscinet  isi  elib  elib
    8. S. P. Kikot', “Axiomatization of Modal Logic Squares with Distinguished Diagonal”, Math. Notes, 88:2 (2010), 238–250  mathnet  crossref  crossref  mathscinet  isi
    9. A. V. Kosheleva, “Decidability of the Admissibility Problem for Inference Rules in Some $S5_t$-Logics”, Algebra and Logic, 44:4 (2005), 243–255  mathnet  crossref  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:814
    Full-text PDF :195
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025