Matematicheskie Trudy
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Tr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Trudy, 2024, Volume 27, Number 1, Pages 5–72
DOI: https://doi.org/10.25205/1560-750X-2024-27-1-5-72
(Mi mt697)
 

This article is cited in 2 scientific papers (total in 2 papers)

Set theoretical solutions of equations of nn – simplexes

V. G. Bardakovabc, B. B. Chuzinovad, I. A. Emelyanenkovd, M. E. Ivanovd, T. A. Kozlovskayab, V. È. Leshkovd

a Tomsk State University, Tomsk, 634050, Russia
b Sobolev Institute of Mathematics, Novosibirsk, 630090, Russia
c Novosibirsk State Agrarian University
d Novosibirsk State University, Novosibirsk, 630090, Russia
References:
Abstract: The nn-simplex equation (nn-SE) was introduced by A. B. Zamolodchikov as a generalization of the Yang–Baxter equation, which is, in these terms, a 2-simplex equation. In this article we propose some general approaches to constructing solutions to equations of nn-simplices, describe some types of solutions, and introduce an operation that, under certain conditions, allows us to construct a solution (n+m+k)(n+m+k)-SE from solutions (n+k)(n+k)-SE and (m+k)(m+k)-SE. We consider tropicalization of rational decisions and discuss ways to generalize it. We prove that if GG is an extension of HH by KK, then we can find a solution of nn-SE on GG from the solutions of this equation on HH and KK. Also, we find solutions to the parametric Yang–Baxter equation on HH with parameters from KK. To study the 3-simplex equation, we introduced algebraic systems with ternary operations and gave examples of these systems that give 3-SE solutions. We find all elementary verbal solutions of 3-SE on a free group.
Key words: Yang–Baxter equation, tetrahedral equation, nn-simplex equation, set-theoretic solution, groupoid, 2-groupoid, ternary, ternoid, group extension, virtual braid group.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-02-2024-1437
This work was supported by the Ministry of Science and Higher Education of Russia (№ 075-02-2024-1437).
Received: 23.07.2023
Revised: 23.11.2023
Accepted: 17.05.2024
English version:
Siberian Advances in Mathematics, 2024, Volume 34, Issue 1, Pages 1–40
DOI: https://doi.org/10.1134/S1055134424010012
Document Type: Article
UDC: 512.56
Language: Russian
Citation: V. G. Bardakov, B. B. Chuzinov, I. A. Emelyanenkov, M. E. Ivanov, T. A. Kozlovskaya, V. È. Leshkov, “Set theoretical solutions of equations of nn – simplexes”, Mat. Tr., 27:1 (2024), 5–72; Siberian Adv. Math., 34:1 (2024), 1–40
Citation in format AMSBIB
\Bibitem{BarChuEme24}
\by V.~G.~Bardakov, B.~B.~Chuzinov, I.~A.~Emelyanenkov, M.~E.~Ivanov, T.~A.~Kozlovskaya, V.~\`E.~Leshkov
\paper Set theoretical solutions of equations of $n$ -- simplexes
\jour Mat. Tr.
\yr 2024
\vol 27
\issue 1
\pages 5--72
\mathnet{http://mi.mathnet.ru/mt697}
\crossref{https://doi.org/10.25205/1560-750X-2024-27-1-5-72}
\transl
\jour Siberian Adv. Math.
\yr 2024
\vol 34
\issue 1
\pages 1--40
\crossref{https://doi.org/10.1134/S1055134424010012}
Linking options:
  • https://www.mathnet.ru/eng/mt697
  • https://www.mathnet.ru/eng/mt/v27/i1/p5
  • This publication is cited in the following 2 articles:
    1. Arash Pourkia, “Unitary and entangling solutions to the parametric Yang–Baxter equation in all dimensions”, Physics Open, 23 (2025), 100263  crossref
    2. V. G. Bardakov, T. A. Kozlovskaya, D. V. Talalaev, “nn-valued quandles and associated bialgebras”, Theoret. and Math. Phys., 220:1 (2024), 1080–1096  mathnet  mathnet  crossref  crossref  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические труды Siberian Advances in Mathematics
    Statistics & downloads:
    Abstract page:30
    Full-text PDF :1
    References:8
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025