Loading [MathJax]/jax/output/SVG/config.js
Matematicheskie Trudy
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Tr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Trudy, 2023, Volume 26, Number 1, Pages 130–149
DOI: https://doi.org/10.33048/mattrudy.2023.26.107
(Mi mt692)
 

Exponential stability and estimates of solutions to systems of functional differential equations

T. L. Sabatulina, V. V. Malygina

Perm National Research Polytechnic University, Perm, 614990, Russia
References:
Abstract: For systems of linear autonomous delay differential equations, we develop a method for studying stability, which consists in constructing an auxiliary system whose asymptotic properties are close to those of the original system. Alongside new signs of stability, we find sharp estimates for the rate at which solutions tend to zero. The effectiveness of the results obtained is illustrated by a number of examples.
Key words: systems of functional differential equations, exponential stability, fundamental matrix, solution rate estimate, monotone operators.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation FSNM–2023–0005
The work was supported by the Ministry of Science and Higher Education of the Russian Federation (project No. FSNM–2023–0005).
Received: 26.05.2023
Revised: 14.06.2023
Accepted: 16.06.2023
English version:
Siberian Advances in Mathematics, 2023, Volume 33, Issue 3, Pages 230–241
DOI: https://doi.org/10.1134/S1055134423030070
Bibliographic databases:
Document Type: Article
UDC: 517.929
Language: Russian
Citation: T. L. Sabatulina, V. V. Malygina, “Exponential stability and estimates of solutions to systems of functional differential equations”, Mat. Tr., 26:1 (2023), 130–149; Siberian Adv. Math., 33:3 (2023), 230–241
Citation in format AMSBIB
\Bibitem{SabMal23}
\by T.~L.~Sabatulina, V.~V.~Malygina
\paper Exponential stability and estimates of solutions to systems of functional differential equations
\jour Mat. Tr.
\yr 2023
\vol 26
\issue 1
\pages 130--149
\mathnet{http://mi.mathnet.ru/mt692}
\crossref{https://doi.org/10.33048/mattrudy.2023.26.107}
\elib{https://elibrary.ru/item.asp?id=54901443}
\transl
\jour Siberian Adv. Math.
\yr 2023
\vol 33
\issue 3
\pages 230--241
\crossref{https://doi.org/10.1134/S1055134423030070}
Linking options:
  • https://www.mathnet.ru/eng/mt692
  • https://www.mathnet.ru/eng/mt/v26/i1/p130
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические труды Siberian Advances in Mathematics
    Statistics & downloads:
    Abstract page:39
    Full-text PDF :15
    References:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025