Abstract:
For contact mappings of Carnot groups of depth two whose image is endowed with a sub-Lorentzian structure, we prove local properties of the surfaces-images and explicitly deduce a sub-Lorentzian analog of the area formula. The result in particular also holds for Lipschitz mappings in the sub-Riemannian sense.
Citation:
M. B. Karmanova, “The area of surfaces on sub-Lorentzian structures of depth two”, Mat. Tr., 26:1 (2023), 93–119; Siberian Adv. Math., 33:3 (2023), 214–229
\Bibitem{Kar23}
\by M.~B.~Karmanova
\paper The area of surfaces on sub-Lorentzian structures of depth two
\jour Mat. Tr.
\yr 2023
\vol 26
\issue 1
\pages 93--119
\mathnet{http://mi.mathnet.ru/mt690}
\crossref{https://doi.org/10.33048/mattrudy.2023.26.105}
\elib{https://elibrary.ru/item.asp?id=54901441}
\transl
\jour Siberian Adv. Math.
\yr 2023
\vol 33
\issue 3
\pages 214--229
\crossref{https://doi.org/10.1134/S1055134423030069}
Linking options:
https://www.mathnet.ru/eng/mt690
https://www.mathnet.ru/eng/mt/v26/i1/p93
This publication is cited in the following 3 articles:
M. B. Karmanova, “The Area of Images of Classes of Measurable Sets on Carnot Groups with Sub-Lorentzian Structure”, Sib Math J, 65:5 (2024), 1116
M. B. Karmanova, “Ploschad obrazov klassov izmerimykh mnozhestv na gruppakh Karno s sublorentsevoi strukturoi”, Sib. matem. zhurn., 65:5 (2024), 926–952
M. B. Karmanova, “Lipschitz images of open sets on sub-Lorentzian structures”, Siberian Adv. Math., 34:1 (2024), 67–79