Abstract:
We give necessary and sufficient conditions for the existence of a solution
to the Cauchy problem for the equation Δk∂2tu+(−1)ku=0
in the space of tempered distributions.
Key words:
Cauchy problem, equation of Sobolev type,
regularization of a distribution.
\Bibitem{Pav18}
\by A.~L.~Pavlov
\paper The Cauchy problem for one equation of Sobolev type
\jour Mat. Tr.
\yr 2018
\vol 21
\issue 1
\pages 125--154
\mathnet{http://mi.mathnet.ru/mt334}
\crossref{https://doi.org/10.17377/mattrudy.2018.21.106}
\elib{https://elibrary.ru/item.asp?id=34878268}
\transl
\jour Siberian Adv. Math.
\yr 2019
\vol 29
\issue 1
\pages 57--76
\crossref{https://doi.org/10.3103/S105513441901005X}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85064761607}
Linking options:
https://www.mathnet.ru/eng/mt334
https://www.mathnet.ru/eng/mt/v21/i1/p125
This publication is cited in the following 6 articles:
Andreas Chatziafratis, Tohru Ozawa, “New instability, blow-up and break-down effects for Sobolev-type evolution PDE: asymptotic analysis for a celebrated pseudo-parabolic model on the quarter-plane”, Partial Differ. Equ. Appl., 5:5 (2024)
A. L. Pavlov, “Regularization of distributions”, Sb. Math., 214:4 (2023), 516–549
A. L. Pavlov, “Regulyarizatsiya obobschennoi funktsii, golomorfno zavisyaschei ot parametra”, Sib. matem. zhurn., 64:6 (2023), 1279–1303
A. L. Pavlov, “Regularization of a Distribution Holomorphic in a Parameter”, Sib Math J, 64:6 (2023), 1399
A. L. Pavlov, “The solvability of the Cauchy problem for a class of Sobolev-type equations in tempered distributions”, Siberian Math. J., 63:5 (2022), 940–955
A. L. Pavlov, “Existence of solutions to the Cauchy problem for some class of Sobolev-type equations in the space of tempered distributions”, Siberian Math. J., 60:4 (2019), 644–660