Loading [MathJax]/jax/output/CommonHTML/jax.js
Matematicheskie Trudy
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Tr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Trudy, 2001, Volume 4, Number 2, Pages 27–41 (Mi mt11)  

This article is cited in 7 scientific papers (total in 7 papers)

Measurable Bundles of Noncommutative Lp-Spaces Associated with a Center-valued Trace

I. G. Ganieva, V. I. Chilinb

a Tashkent Temir YO'L Muxandislari Instituti
b National University of Uzbekistan named after M. Ulugbek
Full-text PDF (793 kB) Citations (7)
References:
Abstract: Suppose that M is a finite von Neumann algebra, Φ is a faithful normal trace on M with values in the center of M, Lp(M,Φ) is the Banach–Kantorovich space of all measurable operators associated with M and p-integrable with respect to Φ, p1. We give a representation of Lp(M,Φ) as a measurable bundle of noncomutative Lp-spaces associated with number traces. We also prove a “pasting” theorem for noncommutative Lp-spaces.
Key words: von Neumann algebra, center-valued trace, measurable bundle, Banach–Kantorovich space.
Received: 30.04.1999
Bibliographic databases:
UDC: 517.98
Language: Russian
Citation: I. G. Ganiev, V. I. Chilin, “Measurable Bundles of Noncommutative Lp-Spaces Associated with a Center-valued Trace”, Mat. Tr., 4:2 (2001), 27–41; Siberian Adv. Math., 12:4 (2002), 19–33
Citation in format AMSBIB
\Bibitem{GanChi01}
\by I.~G.~Ganiev, V.~I.~Chilin
\paper Measurable Bundles of Noncommutative $L_p$-Spaces Associated with a~Center-valued Trace
\jour Mat. Tr.
\yr 2001
\vol 4
\issue 2
\pages 27--41
\mathnet{http://mi.mathnet.ru/mt11}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1875507}
\zmath{https://zbmath.org/?q=an:1052.46045|1005.46030}
\transl
\jour Siberian Adv. Math.
\yr 2002
\vol 12
\issue 4
\pages 19--33
Linking options:
  • https://www.mathnet.ru/eng/mt11
  • https://www.mathnet.ru/eng/mt/v4/i2/p27
  • This publication is cited in the following 7 articles:
    1. Ganiev I., Mukhamedov F., Bekbaev D., “On a Generalized Uniform Zero-Two Law For Positive Contractions of Noncommutative l-1-Spaces and Its Vector-Valued Extension”, Banach J. Math. Anal., 12:3 (2018), 600–616  crossref  mathscinet  isi
    2. Ganiev I., Mukhamedov F., “Conditional Expectations and Martingales in Noncommutative 4 l-P-Spaces Associated With Center-Valued Traces”, Acta Math. Sci., 37:4 (2017), 1019–1032  crossref  mathscinet  zmath  isi  scopus
    3. Ganiev I., Mukhamedov F., Bekbaev D., “the Strong “Zero-Two” Law For Positive Contractions of Banach-Kantorovich l-P-Lattices”, Turk. J. Math., 39:4 (2015), 583–594  crossref  mathscinet  zmath  isi  elib  scopus
    4. Ganiev I., Mukhamedov F., “Weighted Ergodic Theorem For Contractions of Orlicz-Kantorovich Lattice l-M ((Del)Over-Cap, (Mu)Over-Cap)”, Bull. Malays. Math. Sci. Soc., 38:1 (2015), 387–397  crossref  mathscinet  zmath  isi  scopus
    5. Chilin V., Zakirov B., “Non-Commutative l-P-Spaces Associated with a Maharam Trace”, J. Operat. Theor., 68:1 (2012), 67–83  mathscinet  zmath  isi  elib
    6. B. S. Zakirov, V. I. Chilin, “Noncommutative integration for traces with values in Kantorovich–Pinsker spaces”, Russian Math. (Iz. VUZ), 54:10 (2010), 15–26  mathnet  crossref  mathscinet
    7. I. G. Ganiev, K. K. Kudaibergenov, “The Banach–Steinhaus Uniform Boundedness Principle for Operators in Banach–Kantorovich Spaces over L0”, Siberian Adv. Math., 16:3 (2006), 42–53  mathnet  mathscinet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические труды Siberian Advances in Mathematics
    Statistics & downloads:
    Abstract page:415
    Full-text PDF :164
    References:59
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025