Abstract:
This paper is devoted to the description of symmetric operators and the justification of Green's formula for a fractional analogue of the Sturm–Liouville operator of order 2α, where 12<α<1.
Key words and phrases:
self-adjoint extensions, Green's formula, differential equation of fractional order, boundary value problem, fractional Sturm–Liouville operator.
Citation:
N. E. Tokmagambetov, B. T. Torebek, “Symmetric differential operators of fractional order and their extensions”, Tr. Mosk. Mat. Obs., 79, no. 2, MCCME, M., 2018, 209–219; Trans. Moscow Math. Soc., 2018, 177–185
\Bibitem{TokTor18}
\by N.~E.~Tokmagambetov, B.~T.~Torebek
\paper Symmetric differential operators of fractional order and their extensions
\serial Tr. Mosk. Mat. Obs.
\yr 2018
\vol 79
\issue 2
\pages 209--219
\publ MCCME
\publaddr M.
\mathnet{http://mi.mathnet.ru/mmo612}
\elib{https://elibrary.ru/item.asp?id=37045095}
\transl
\jour Trans. Moscow Math. Soc.
\yr 2018
\pages 177--185
\crossref{https://doi.org/10.1090/mosc/279}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85060993789}
Linking options:
https://www.mathnet.ru/eng/mmo612
https://www.mathnet.ru/eng/mmo/v79/i2/p209
This publication is cited in the following 1 articles:
D. Serikbaev, N. Tokmagambetov, “A source inverse problem for the pseudo-parabolic equation with the fractional Sturm-Liouville operator”, Bull. Karaganda Univ-Math., 100:4 (2020), 143–151