Loading [MathJax]/jax/output/SVG/config.js
Trudy Moskovskogo Matematicheskogo Obshchestva
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Tr. Mosk. Mat. Obs.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Moskovskogo Matematicheskogo Obshchestva, 2015, Volume 76, Issue 2, Pages 287–308 (Mi mmo579)  

This article is cited in 19 scientific papers (total in 19 papers)

Symmetric band complexes of thin type and chaotic sections which are not quite chaotic

I. Dynnikova, A. Skripchenkob

a Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
b Faculty of Mathematics, National Research University Higher School of Economics, Moscow, Russia
References:
Abstract: In a recent paper we constructed a family of foliated 2-complexes of thin type whose typical leaves have two topological ends. Here we present simpler examples of such complexes that are, in addition, symmetric with respect to an involution and have the smallest possible rank. This allows for constructing a 3-periodic surface in the three-space with a plane direction such that the surface has a central symmetry, and the plane sections of the chosen direction are chaotic and consist of infinitely many connected components. Moreover, typical connected components of the sections have an asymptotic direction, which is due to the fact that the corresponding foliation on the surface in the 3-torus is not uniquely ergodic.
References: 25 entries.
Key words and phrases: band complex, Rips machine, Rauzy induction, measured foliation, ergodicity.
Funding agency Grant number
Russian Foundation for Basic Research 13-01-12469
Dynasty Foundation
Received: 24.01.2015
Revised: 15.03.2015
English version:
Transactions of the Moscow Mathematical Society, 2015, Volume 76, Issue 2, Pages 251–269
DOI: https://doi.org/10.1090/mosc/246
Bibliographic databases:
Document Type: Article
UDC: 515.162
MSC: 57R30, 37E05, 37E25
Language: English
Citation: I. Dynnikov, A. Skripchenko, “Symmetric band complexes of thin type and chaotic sections which are not quite chaotic”, Tr. Mosk. Mat. Obs., 76, no. 2, MCCME, M., 2015, 287–308; Trans. Moscow Math. Soc., 76:2 (2015), 251–269
Citation in format AMSBIB
\Bibitem{DynSkr15}
\by I.~Dynnikov, A.~Skripchenko
\paper Symmetric band complexes of thin type and chaotic sections which are not quite chaotic
\serial Tr. Mosk. Mat. Obs.
\yr 2015
\vol 76
\issue 2
\pages 287--308
\publ MCCME
\publaddr M.
\mathnet{http://mi.mathnet.ru/mmo579}
\elib{https://elibrary.ru/item.asp?id=24850147}
\transl
\jour Trans. Moscow Math. Soc.
\yr 2015
\vol 76
\issue 2
\pages 251--269
\crossref{https://doi.org/10.1090/mosc/246}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84960081631}
Linking options:
  • https://www.mathnet.ru/eng/mmo579
  • https://www.mathnet.ru/eng/mmo/v76/i2/p287
  • This publication is cited in the following 19 articles:
    1. A. Ya. Maltsev, “On the Novikov Problem with a Large Number of Quasiperiods and Its Generalizations”, Proc. Steklov Inst. Math., 325 (2024), 163–176  mathnet  crossref  crossref  zmath
    2. A. Ya. Mal'tsev, “OSOBENNOSTI τ -PRIBLIZhENIYa DLYa KhAOTIChESKIKh ELEKTRONNYKh TRAEKTORIY NA SLOZhNYKh POVERKhNOSTYaKh FERMI”, Žurnal èksperimentalʹnoj i teoretičeskoj fiziki, 166:3 (2024)  crossref
    3. A. S. Skripchenko, “Renormalization in one-dimensional dynamics”, Russian Math. Surveys, 78:6 (2023), 983–1021  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    4. A. Ya. Maltsev, “Lifshitz Transitions and Angular Conductivity Diagrams in Metals with Complex Fermi Surfaces”, J. Exp. Theor. Phys., 137:5 (2023), 706  crossref
    5. Ivan Dynnikov, Pascal Hubert, Alexandra Skripchenko, “Dynamical Systems Around the Rauzy Gasket and Their Ergodic Properties”, Int. Math. Res. Not. IMRN, 2023:8 (2023), 6461–6503  mathnet  crossref
    6. A. Ya Mal'tsev, “Perekhody Lifshitsa i uglovye diagrammy provodimosti v metallakh so slozhnymi poverkhnostyami Fermi”, Zhurnal eksperimentalnoi i teoreticheskoi fiziki, 164:5 (2023), 817  crossref
    7. I. A. Dynnikov, A. Ya. Mal'tsev, S. P. Novikov, “Geometry of quasiperiodic functions on the plane”, Russian Math. Surveys, 77:6 (2022), 1061–1085  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    8. I. A. Dynnikov, A. Ya. Mal'tsev, S. P. Novikov, “Chaotic trajectories on fermi surfaces and nontrivial modes of behavior of magnetic conductivity”, J. Exp. Theor. Phys., 135 (2022), 240–254  mathnet  mathnet  crossref  crossref
    9. Dynnikov I., Maltsev A., “Features of the Motion of Ultracold Atoms in Quasiperiodic Potentials”, J. Exp. Theor. Phys., 133:6 (2021), 711–736  crossref  mathscinet  isi  scopus
    10. O. Paris-Romaskevich, “Tiling billiards and Dynnikov's helicoid”, Trans. Moscow Math. Soc., 82 (2021), 133–147  mathnet  mathnet  crossref  scopus
    11. A. Ya. Maltsev, “Reconstructions of the electron dynamics in magnetic field and the geometry of complex fermi surfaces”, J. Exp. Theor. Phys., 131:6 (2020), 988–1020  crossref  isi  scopus
    12. A. Ya. Maltsev, S. P. Novikov, “Topological integrability, classical and quantum chaos, and the theory of dynamical systems in the physics of condensed matter”, Russian Math. Surveys, 74:1 (2019), 141–173  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    13. R. De Leo, A. Y. Maltsev, “Quasiperiodic dynamics and magnetoresistance in normal metals”, Acta Appl. Math., 162:1 (2019), 47–61  crossref  mathscinet  zmath  isi  scopus
    14. S. P. Novikov, R. De Leo, I. A. Dynnikov, A. Ya. Maltsev, “Theory of dynamical systems and transport phenomena in normal metals”, J. Exp. Theor. Phys., 129:4, SI (2019), 710–721  crossref  mathscinet  isi  scopus
    15. A. Ya. Maltsev, “The complexity classes of angular diagrams of the metal conductivity in strong magnetic fields”, J. Exp. Theor. Phys., 129:1 (2019), 116–138  crossref  isi  scopus
    16. R. De Leo, “A survey on quasiperiodic topology”, Advanced Mathematical Methods in Biosciences and Applications, Steam-H Science Technology Engineering Agriculture Mathematics & Health, eds. F. Berezovskaya, B. Toni, Springer, 2019, 53–88  crossref  mathscinet  zmath  isi
    17. A. Ya. Maltsev, S. P. Novikov, “The theory of closed 1-forms, levels of quasiperiodic functions and transport phenomena in electron systems”, Proc. Steklov Inst. Math., 302 (2018), 279–297  mathnet  crossref  crossref  mathscinet  isi  elib
    18. W. P. Hooper, B. Weiss, “Rel leaves of the Arnoux–Yoccoz surfaces”, Sel. Math.-New Ser., 24:2 (2018), 875–934  crossref  mathscinet  zmath  isi  scopus
    19. A. Ya. Maltsev, “The Second Boundaries of Stability Zones and the Angular Diagrams of Conductivity for Metals Having Complicated Fermi Surfaces”, J. Exp. Theor. Phys., 127:6 (2018), 1087  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Moskovskogo Matematicheskogo Obshchestva
    Statistics & downloads:
    Abstract page:385
    Full-text PDF :107
    References:102
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025