Trudy Moskovskogo Matematicheskogo Obshchestva
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Tr. Mosk. Mat. Obs.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Moskovskogo Matematicheskogo Obshchestva, 2011, Volume 72, Issue 2, Pages 249–280 (Mi mmo18)  

This article is cited in 8 scientific papers (total in 8 papers)

On C2-stable effects of intermingled basins of attractors in classes of boundary-preserving maps

V. A. Kleptsyna, P. S. Saltykovb

a CNRS, Institut de Recherche Mathématique de Rennes (UMR 6625)
b M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Full-text PDF (361 kB) Citations (8)
References:
Abstract: In the spaces of boundary-preserving maps of an annulus and a thickened torus, we construct open sets in which every map has intermingled basins of attraction, as predicted by I. Kan.
Namely, the attraction basins of each of the boundary components are everywhere dense in the phase space for such maps. Moreover, the Hausdorff dimension of the set of points that are not attracted by either of the components proves to be less than the dimension of the phase space itself, which strengthens the result following from the argument due to Bonatti, Diaz, and Viana.
Key words and phrases: dynamical system, attractor, stability, partially hyperbolic skew product, Hцlder rectifying map.
Received: 22.03.2011
English version:
Transactions of the Moscow Mathematical Society, 2011, Volume 72, Pages 193–217
DOI: https://doi.org/10.1090/S0077-1554-2012-00196-4
Bibliographic databases:
Document Type: Article
UDC: 517.987.5+517.938.5
MSC: 37C70, 37D25
Language: Russian
Citation: V. A. Kleptsyn, P. S. Saltykov, “On C2-stable effects of intermingled basins of attractors in classes of boundary-preserving maps”, Tr. Mosk. Mat. Obs., 72, no. 2, MCCME, Moscow, 2011, 249–280; Trans. Moscow Math. Soc., 72 (2011), 193–217
Citation in format AMSBIB
\Bibitem{KleSal11}
\by V.~A.~Kleptsyn, P.~S.~Saltykov
\paper On $C^2$-stable effects of intermingled basins of attractors in classes of boundary-preserving maps
\serial Tr. Mosk. Mat. Obs.
\yr 2011
\vol 72
\issue 2
\pages 249--280
\publ MCCME
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/mmo18}
\zmath{https://zbmath.org/?q=an:06026278}
\elib{https://elibrary.ru/item.asp?id=21369344}
\transl
\jour Trans. Moscow Math. Soc.
\yr 2011
\vol 72
\pages 193--217
\crossref{https://doi.org/10.1090/S0077-1554-2012-00196-4}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84868114456}
Linking options:
  • https://www.mathnet.ru/eng/mmo18
  • https://www.mathnet.ru/eng/mmo/v72/i2/p249
  • This publication is cited in the following 8 articles:
    1. Nunez-Madariaga B., Ramirez S.A., Vasquez C.H., “Measures Maximizing the Entropy For Kan Endomorphisms”, Nonlinearity, 34:10 (2021), 7255–7302  crossref  mathscinet  isi  scopus
    2. Bonatti Ch., Minkov S., Okunev A., Shilin I., “Anosov Diffeomorphism With a Horseshoe That Attracts Almost Any Point”, Discret. Contin. Dyn. Syst., 40:1 (2020), 441–465  crossref  mathscinet  zmath  isi  scopus
    3. Gan Sh., Shi Y., “Robustly Topological Mixing of Kan'S Map”, J. Differ. Equ., 266:11 (2019), 7173–7196  crossref  mathscinet  zmath  isi  scopus
    4. Cheng Ch., Gan Sh., Shi Y., “A Robustly Transitive Diffeomorphism of Kan'S Type”, Discret. Contin. Dyn. Syst., 38:2 (2018), 867–888  crossref  mathscinet  zmath  isi  scopus
    5. Ures R., Vasquez C.H., “On the Non-Robustness of Intermingled Basins”, Ergod. Theory Dyn. Syst., 38:1 (2018), 384–400  crossref  mathscinet  zmath  isi  scopus
    6. Gharaei M., Homburg A.J., “Random Interval Diffeomorphisms”, Discret. Contin. Dyn. Syst.-Ser. S, 10:2 (2017), 241–272  crossref  mathscinet  zmath  isi  scopus
    7. N. A. Solodovnikov, “Boundary-preserving mappings of a manifold with intermingling basins of components of the attractor, one of which is open”, Trans. Moscow Math. Soc., 75 (2014), 69–76  mathnet  crossref  elib
    8. Kleptsyn V., Ryzhov D., Minkov S., “Special Ergodic Theorems and Dynamical Large Deviations”, Nonlinearity, 25:11 (2012), 3189–3196  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Moskovskogo Matematicheskogo Obshchestva
    Statistics & downloads:
    Abstract page:427
    Full-text PDF :113
    References:72
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025