Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2003, Volume 3, Number 2, Pages 361–395
DOI: https://doi.org/10.17323/1609-4514-2003-3-2-361-395
(Mi mmj91)
 

This article is cited in 7 scientific papers (total in 7 papers)

On the legacy of free divisors. II. Free* divisors and complete intersections

J. Damon

Department of Mathematics, University of North Carolina at Chapel Hill
Full-text PDF Citations (7)
References:
Abstract: We provide a criterion that for an equivalence group G on holomorphic germs, the discriminant of a G-versal unfolding is a free divisor. The criterion is in terms of the discriminant being Cohen–Macaulay and generically having Morse-type singularities. When either of these conditions fails, we provide a criterion that the discriminant have a weaker free* divisor structure. For nonlinear sections of a free* divisor V, we obtain a formula for the number of singular vanishing cycles by modifying an earlier formula obtained with David Mond and taking into account virtual singularities.
Key words and phrases: Discriminants, versal unfoldings, free divisors, free* divisors, liftable vector fields, Morse-type singularities, Cohen–Macaulay condition.
Received: May 15, 2002
Bibliographic databases:
MSC: Primary 14B07, 14M12, 32S30; Secondary 16G50, 14J17
Language: English
Citation: J. Damon, “On the legacy of free divisors. II. Free* divisors and complete intersections”, Mosc. Math. J., 3:2 (2003), 361–395
Citation in format AMSBIB
\Bibitem{Dam03}
\by J.~Damon
\paper On the legacy of free divisors. II.~Free* divisors and complete intersections
\jour Mosc. Math.~J.
\yr 2003
\vol 3
\issue 2
\pages 361--395
\mathnet{http://mi.mathnet.ru/mmj91}
\crossref{https://doi.org/10.17323/1609-4514-2003-3-2-361-395}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2025265}
\zmath{https://zbmath.org/?q=an:1040.32026}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000208594200004}
\elib{https://elibrary.ru/item.asp?id=8379106}
Linking options:
  • https://www.mathnet.ru/eng/mmj91
  • https://www.mathnet.ru/eng/mmj/v3/i2/p361
  • This publication is cited in the following 7 articles:
    1. Shinichi Tajima, Takafumi Shibuta, Katsusuke Nabeshima, Lecture Notes in Computer Science, 12291, Computer Algebra in Scientific Computing, 2020, 543  crossref
    2. Nabeshima K., Tajima Sh., “Computation Methods of Logarithmic Vector Fields Associated to Semi-Weighted Homogeneous Isolated Hypersurface Singularities”, Tsukuba J. Math., 42:2 (2018), 191–231  crossref  mathscinet  zmath  isi
    3. Damon J. Pike B., “Solvable Groups, Free Divisors and Nonisolated Matrix Singularities i: Towers of Free Divisors”, Ann. Inst. Fourier, 65:3 (2015), 1251–1300  crossref  mathscinet  zmath  isi
    4. Damon J., Pike B., “Solvable group representations and free divisors whose complements are K(pi, 1)'s”, Topology Appl, 159:2 (2012), 437–449  crossref  mathscinet  zmath  isi
    5. Buchweitz R.-O., Ebeling W., von Bothmer H.-Ch.G., “Low-Dimensional Singularities with Free Divisors as Discriminants”, Journal of Algebraic Geometry, 18:2 (2009), 371–406  crossref  mathscinet  zmath  isi
    6. Damon J., “On the legacy of free divisors III: Functions and divisors on complete intersections”, Quarterly Journal of Mathematics, 57:1 (2006), 49–79  crossref  mathscinet  zmath  isi
    7. Anne Frühbis-Krüger, “Partial standard bases as a tool for studying families of singularities”, Journal of Symbolic Computation, 38:4 (2004), 1191  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:267
    References:84
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025