Loading [MathJax]/jax/output/SVG/config.js
Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2023, Volume 23, Number 4, Pages 591–624 (Mi mmj869)  

Integrability of vector fields and meromorphic solutions

Julio C. Rebeloa, Helena Reisb

a Institut de Mathématiques de Toulouse; UMR 5219, Université de Toulouse, 118 Route de Narbonne, F-31062 Toulouse, France
b Centro de Matemática da Universidade do Porto, Faculdade de Economia da Universidade do Porto, Portugal
References:
Abstract: Let $\mathcal F$ be a one-dimensional holomorphic foliation defined on a complex projective manifold and consider a meromorphic vector field $X$ tangent to $\mathcal F$. In this paper, we prove that if the set of integral curves of $X$ that are given by meromorphic maps defined on $\mathbb{C}$ is “large enough”, then the restriction of $\mathcal F$ to any invariant complex $2$-dimensional analytic set admits a first integral of Liouvillean type. In particular, on $\mathbb{C}^3$, every rational vector field whose solutions are meromorphic functions defined on $\mathbb{C}$ admits an invariant analytic set of dimension $2$ such that the restriction of the vector field to it yields a Liouville integrable foliation.
Key words and phrases: meromorphic solutions, Liouvillian first integral, foliated Poincaré metric, Riccati and turbulent foliations.
Document Type: Article
MSC: Primary 34M05, 37F75; Secondary 34A05
Language: English
Citation: Julio C. Rebelo, Helena Reis, “Integrability of vector fields and meromorphic solutions”, Mosc. Math. J., 23:4 (2023), 591–624
Citation in format AMSBIB
\Bibitem{RebRei23}
\by Julio~C.~Rebelo, Helena~Reis
\paper Integrability of vector fields and meromorphic solutions
\jour Mosc. Math.~J.
\yr 2023
\vol 23
\issue 4
\pages 591--624
\mathnet{http://mi.mathnet.ru/mmj869}
Linking options:
  • https://www.mathnet.ru/eng/mmj869
  • https://www.mathnet.ru/eng/mmj/v23/i4/p591
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:92
    References:35
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025