Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2003, Volume 3, Number 1, Pages 97–103
DOI: https://doi.org/10.17323/1609-4514-2003-3-1-97-103
(Mi mmj78)
 

This article is cited in 10 scientific papers (total in 10 papers)

Set-theoretical solutions to the Yang–Baxter relation from factorization of matrix polynomials and θθ-functions

A. V. Odesskii

L. D. Landau Institute for Theoretical Physics, Russian Academy of Sciences
Full-text PDF Citations (10)
References:
Abstract: New set-theoretical solutions to the Yang–Baxter Relation are constructed. These solutions arise from the decompositions “in different order” of matrix polynomials and θθ-functions. We also construct a “local action of the symmetric group” in these cases, generalizations of the action of the symmetric group SNSN given by the set-theoretical solution.
Key words and phrases: Yang–Baxter relation, set-theoretical solution, local action of the symmetric group, matrix polynomials, matrix θθ-functions.
Received: November 2, 2001; in revised form April 8, 2002
Bibliographic databases:
MSC: 81R50
Language: English
Citation: A. V. Odesskii, “Set-theoretical solutions to the Yang–Baxter relation from factorization of matrix polynomials and θθ-functions”, Mosc. Math. J., 3:1 (2003), 97–103
Citation in format AMSBIB
\Bibitem{Ode03}
\by A.~V.~Odesskii
\paper Set-theoretical solutions to the Yang--Baxter relation from factorization of matrix polynomials and $\theta$-functions
\jour Mosc. Math.~J.
\yr 2003
\vol 3
\issue 1
\pages 97--103
\mathnet{http://mi.mathnet.ru/mmj78}
\crossref{https://doi.org/10.17323/1609-4514-2003-3-1-97-103}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1996805}
\zmath{https://zbmath.org/?q=an:1052.81050}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000208594100008}
Linking options:
  • https://www.mathnet.ru/eng/mmj78
  • https://www.mathnet.ru/eng/mmj/v3/i1/p97
  • This publication is cited in the following 10 articles:
    1. Andrew P. Kels, “Two-component Yang–Baxter maps and star-triangle relations”, Physica D: Nonlinear Phenomena, 448 (2023), 133723  crossref
    2. Retakh V., Saks M., “On the Rational Relationships Among Pseudo-Roots of Anon-Commutative Polynomial”, J. Pure Appl. Algebr., 225:6 (2021), 106581  crossref  mathscinet  isi  scopus
    3. Tsuboi Z., “Quantum Groups, Yang-Baxter Maps and Quasi-Determinants”, Nucl. Phys. B, 926 (2018), 200–238  crossref  mathscinet  zmath  isi  scopus
    4. Bazhanov V.V., Sergeev S.M., “Yang-Baxter Maps, Discrete Integrable Equations and Quantum Groups”, Nucl. Phys. B, 926 (2018), 509–543  crossref  mathscinet  zmath  isi  scopus
    5. Maldonado C., Mombelli J.M., “On braided groupoids”, J. Algebra, 307:2 (2007), 677–694  crossref  mathscinet  zmath  isi
    6. Retakh V., Serconek Sh., Wilson R.L., “Construction of some algebras associated to directed graphs and related to factorizations of noncommutative polynomials”, Lie Algebras, Vertex Operator Algebras and their Applications, Contemporary Mathematics Series, 442, 2007, 201–219  crossref  mathscinet  zmath  isi
    7. Odesskii A.V., Sokolov V.V., “Compatible Lie brackets related to elliptic curve”, J. Math. Phys., 47:1 (2006), 013506, 14 pp.  crossref  mathscinet  zmath  adsnasa  isi  elib
    8. Gelfand I., Retakh V., Serconek S., Wilson R., “On a class of algebras associated to directed graphs”, Selecta Math. (N.S.), 11:2 (2005), 281–295  crossref  mathscinet  zmath  isi
    9. Borodin A., “Isomonodromy transformations of linear systems of difference equations”, Ann. of Math. (2), 160:3 (2004), 1141–1182  crossref  mathscinet  isi
    10. Adler V.E., Bobenko A.I., Suris Yu.B., “Geometry of Yang–Baxter maps: pencils of conics and quadrirational mappings”, Comm. Anal. Geom., 12:5 (2004), 967–1007  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:416
    References:73
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025