Loading [MathJax]/jax/output/CommonHTML/jax.js
Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2017, Volume 17, Number 2, Pages 291–321
DOI: https://doi.org/10.17323/1609-4514-2017-17-2-291-321
(Mi mmj638)
 

This article is cited in 3 scientific papers (total in 3 papers)

Deformations of the Hilbert scheme of points on a del Pezzo surface

Chunyi Li

School of Mathematics and Maxwell Institute, University of Edinburgh
Full-text PDF Citations (3)
References:
Abstract: Let S be a smooth del Pezzo surface over C of degree d and HilbnS be the Hilbert scheme that parameterizes 0-dimensional subschemes of length n. In this paper, we construct a flat family of deformations of HilbnS which can be conceptually understood as the Hilbert scheme of deformed non-commutative del Pezzo surfaces. Further we show that each deformed HilbnS carries a generically symplectic holomorphic Poisson structure. Moreover, the generic deformation of HilbnS has an (11d)-dimensional moduli space and each of the fibers is of the form that we construct.
Key words and phrases: Hilbert scheme, exceptional collection, geometric invariant theory, holomorphic Poisson structure.
Received: July 29, 2014; in revised form January 20, 2016
Bibliographic databases:
Document Type: Article
MSC: 14D20, 16E35
Language: English
Citation: Chunyi Li, “Deformations of the Hilbert scheme of points on a del Pezzo surface”, Mosc. Math. J., 17:2 (2017), 291–321
Citation in format AMSBIB
\Bibitem{Li17}
\by Chunyi~Li
\paper Deformations of the Hilbert scheme of points on a~del Pezzo surface
\jour Mosc. Math.~J.
\yr 2017
\vol 17
\issue 2
\pages 291--321
\mathnet{http://mi.mathnet.ru/mmj638}
\crossref{https://doi.org/10.17323/1609-4514-2017-17-2-291-321}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3669875}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000408697900006}
Linking options:
  • https://www.mathnet.ru/eng/mmj638
  • https://www.mathnet.ru/eng/mmj/v17/i2/p291
  • This publication is cited in the following 3 articles:
    1. Pieter Belmans, Georg Oberdieck, Jørgen Rennemo, “Automorphisms of Hilbert schemes of points on surfaces”, Trans. Amer. Math. Soc., 373:9 (2020), 6139  crossref
    2. P. Belmans, L. Fu, T. Raedschelders, “Hilbert squares: derived categories and deformations”, Sel. Math.-New Ser., 25:3 (2019), UNSP 37  crossref  mathscinet  isi  scopus
    3. Zh. Hua, A. Polishchuk, “Shifted Poisson structures and moduli spaces of complexes”, Adv. Math., 338 (2018), 991–1037  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:303
    References:69
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025