Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2002, Volume 2, Number 2, Pages 329–402
DOI: https://doi.org/10.17323/1609-4514-2002-2-2-329-402
(Mi mmj58)
 

This article is cited in 41 scientific papers (total in 41 papers)

Infinite global fields and the generalized Brauer–Siegel theorem

M. A. Tsfasmanabc, S. G. Vlăduţac

a Institute for Information Transmission Problems, Russian Academy of Sciences
b Independent University of Moscow
c Institut de Mathématiques de Luminy
Full-text PDF Citations (41)
References:
Abstract: The paper has two purposes. First, we start to develop a theory of infinite global fields, i.e., of infinite algebraic extensions either of Q or of Fr(t). We produce a series of invariants of such fields, and we introduce and study a kind of zeta-function for them. Second, for sequences of number fields with growing discriminant, we prove generalizations of the Odlyzko–Serre bounds and of the Brauer–Siegel theorem, taking into account non-archimedean places. This leads to asymptotic bounds on the ratio loghR/log|D| valid without the standard assumption n/log|D|0, thus including, in particular, the case of unramified towers. Then we produce examples of class field towers, showing that this assumption is indeed necessary for the Brauer–Siegel theorem to hold. As an easy consequence we ameliorate existing bounds for regulators.
Key words and phrases: Global field, number field, curve over a finite field, class number, regulator, discriminant bound, explicit formulae, infinite global field, Brauer–Siegel theorem.
Received: June 10, 2001; in revised form April 23, 2002
Bibliographic databases:
Language: English
Citation: M. A. Tsfasman, S. G. Vlăduţ, “Infinite global fields and the generalized Brauer–Siegel theorem”, Mosc. Math. J., 2:2 (2002), 329–402
Citation in format AMSBIB
\Bibitem{TsfVla02}
\by M.~A.~Tsfasman, S.~G.~Vl{\u a}du\c t
\paper Infinite global fields and the generalized Brauer--Siegel theorem
\jour Mosc. Math.~J.
\yr 2002
\vol 2
\issue 2
\pages 329--402
\mathnet{http://mi.mathnet.ru/mmj58}
\crossref{https://doi.org/10.17323/1609-4514-2002-2-2-329-402}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1944510}
\zmath{https://zbmath.org/?q=an:1004.11037}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000208593400007}
\elib{https://elibrary.ru/item.asp?id=8379129}
Linking options:
  • https://www.mathnet.ru/eng/mmj58
  • https://www.mathnet.ru/eng/mmj/v2/i2/p329
  • This publication is cited in the following 41 articles:
    1. Hershy Kisilevsky, Jungbae Nam, “Non-zero central values of Dirichlet twists of elliptic L-functions”, Journal of Number Theory, 266 (2025), 166  crossref
    2. Nikolai S. Nadirashvili, Michael A. Tsfasman, “Complete description of measures corresponding to Abelian varieties over finite fields”, Finite Fields and Their Applications, 101 (2025), 102543  crossref
    3. SUSHANT KALA, “ON THE LOWEST ZERO OF THE DEDEKIND ZETA FUNCTION”, Bull. Aust. Math. Soc., 2024, 1  crossref
    4. PENG-JIE WONG, “ON STARK'S CLASS NUMBER CONJECTURE AND THE GENERALISED BRAUER–SIEGEL CONJECTURE”, Bull. Aust. Math. Soc., 106:2 (2022), 288  crossref
    5. Dixit A.B., “On the Generalized Brauer-Siegel Theorem For Asymptotically Exact Families of Number Fields With Solvable Galois Closure”, Int. Math. Res. Notices, 2021:14 (2021), 10941–10956  crossref  mathscinet  isi  scopus
    6. Farshid Hajir, Christian Maire, Ravi Ramakrishna, “Cutting towers of number fields”, Ann. Math. Québec, 45:2 (2021), 321  crossref
    7. Georges Gras, “Genus theory and ε-conjectures on p-class groups”, Journal of Number Theory, 207 (2020), 423  crossref
    8. Anup B. Dixit, “A uniqueness property of general Dirichlet series”, Journal of Number Theory, 206 (2020), 123  crossref
    9. Michael A. Tsfasman, “Serre's theorem and measures corresponding to abelian varieties over finite fields”, Mosc. Math. J., 19:4 (2019), 789–806  mathnet  crossref
    10. Hallouin E., Perret M., “a Unified Viewpoint For Upper Bounds For the Number of Points of Curves Over Finite Fields Via Euclidean Geometry and Semi-Definite Symmetric Toeplitz Matrices”, Trans. Am. Math. Soc., 372:8 (2019), 5409–5451  crossref  mathscinet  zmath  isi  scopus
    11. Gras G., “Heuristics and Conjectures in the Direction of a P-Adic Brauer-Siegel Theorem”, Math. Comput., 88:318 (2019), 1929–1965  crossref  mathscinet  zmath  isi  scopus
    12. Ngo Thi Ngoan, Nguyen Quoc Thang, “on Some Local-Global Principles For Linear Algebraic Groups Over Infinite Algebraic Extensions of Global Fields”, Linear Alg. Appl., 568 (2019), 39–83  crossref  mathscinet  zmath  isi  scopus
    13. Hindry M., “Analogues of Brauer-Siegel Theorem in Arithmetic Geometry”, Arithmetic Geometry: Computation and Applications, Contemporary Mathematics, 722, ed. Aubry Y. Howe E. Ritzenthaler C., Amer Mathematical Soc, 2019, 19–41  crossref  mathscinet  zmath  isi
    14. S. G. Vlăduţ, D. Yu. Nogin, M. A. Tsfasman, “Varieties over finite fields: quantitative theory”, Russian Math. Surveys, 73:2 (2018), 261–322  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    15. A. L. Smirnov, “Kummer's tower and big zeta-functions”, J. Math. Sci. (N. Y.), 242:4 (2019), 568–574  mathnet  crossref
    16. Maire Ch., Oggier F., “Maximal Order Codes Over Number Fields”, J. Pure Appl. Algebr., 222:7 (2018), 1827–1858  crossref  mathscinet  zmath  isi  scopus
    17. Griffon R., “A Brauer-Siegel Theorem For Fermat Surfaces Over Finite Fields”, J. Lond. Math. Soc.-Second Ser., 97:3 (2018), 523–549  crossref  mathscinet  zmath  isi  scopus
    18. Hajir F., Maire Ch., “On the Invariant Factors of Class Groups in Towers of Number Fields”, Can. J. Math.-J. Can. Math., 70:1 (2018), 142–172  crossref  mathscinet  zmath  isi
    19. Philippe Lebacque, Alexey Zykin, “On $M$-functions associated with modular forms”, Mosc. Math. J., 18:3 (2018), 437–472  mathnet  crossref
    20. Luzzi L., Vehkalahti R., “Almost Universal Codes Achieving Ergodic Mimo Capacity Within a Constant Gap”, IEEE Trans. Inf. Theory, 63:5 (2017), 3224–3241  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:551
    References:112
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025