Loading [MathJax]/jax/output/SVG/config.js
Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2002, Volume 2, Number 1, Pages 183–196
DOI: https://doi.org/10.17323/1609-4514-2002-2-1-183-196
(Mi mmj51)
 

This article is cited in 18 scientific papers (total in 18 papers)

Ellipsoids, complete integrability and hyperbolic geometry

S. L. Tabachnikov

Pennsylvania State University
Full-text PDF Citations (18)
References:
Abstract: We describe a new proof of the complete integrability of the two related dynamical systems: the billiard inside the ellipsoid and the geodesic flow on the ellipsoid (in Euclidean, spherical or hyperbolic space). The proof is based on the construction of a metric on the ellipsoid whose nonparameterized geodesics coincide with those of the standard metric. This new metric is induced by the hyperbolic metric inside the ellipsoid (the Caley–Klein model of hyperbolic space).
Key words and phrases: Riemannian and Finsler metrics, symplectic and contact structures, geodesic flow, mathematical billiard, hyperbolic metric, Caley–Klein model, exact transverse line fields.
Received: October 30, 2001; in revised form January 15, 2002
Bibliographic databases:
MSC: 53A15, 53A20, 53D25
Language: English
Citation: S. L. Tabachnikov, “Ellipsoids, complete integrability and hyperbolic geometry”, Mosc. Math. J., 2:1 (2002), 183–196
Citation in format AMSBIB
\Bibitem{Tab02}
\by S.~L.~Tabachnikov
\paper Ellipsoids, complete integrability and hyperbolic geometry
\jour Mosc. Math.~J.
\yr 2002
\vol 2
\issue 1
\pages 183--196
\mathnet{http://mi.mathnet.ru/mmj51}
\crossref{https://doi.org/10.17323/1609-4514-2002-2-1-183-196}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1900590}
\zmath{https://zbmath.org/?q=an:1013.37029}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000208587700010}
\elib{https://elibrary.ru/item.asp?id=8379101}
Linking options:
  • https://www.mathnet.ru/eng/mmj51
  • https://www.mathnet.ru/eng/mmj/v2/i1/p183
  • This publication is cited in the following 18 articles:
    1. Airi Takeuchi, Lei Zhao, “Projective integrable mechanical billiards”, Nonlinearity, 37:1 (2024), 015011  crossref
    2. Airi Takeuchi, Lei Zhao, “Integrable Mechanical Billiards in Higher-Dimensional Space Forms”, Regul. Chaotic Dyn., 29:3 (2024), 405–434  mathnet  crossref
    3. Andrey V. Tsiganov, “Integrable Systems on a Sphere, an Ellipsoid and a Hyperboloid”, Regul. Chaotic Dyn., 28:6 (2023), 805–821  mathnet  crossref
    4. Andrew Clarke, “Generic properties of geodesic flows on analytic hypersurfaces of Euclidean space”, DCDS, 42:12 (2022), 5839  crossref
    5. Lei Zhao, “Projective dynamics and an integrable Boltzmann billiard model”, Commun. Contemp. Math., 24:10 (2022)  crossref
    6. Veselov A.P., Wu L.H., “Geodesic Scattering on Hyperboloids and Knorrer'S Map”, Nonlinearity, 34:9 (2021), 5926–5954  crossref  mathscinet  isi  scopus
    7. Dan Reznik, Ronaldo Garcia, Jair Koiller, “Can the Elliptic Billiard Still Surprise Us?”, Math Intelligencer, 42:1 (2020), 6  crossref
    8. Damien Thomine, “Keplerian shear in ergodic theory”, Annales Henri Lebesgue, 3 (2020), 649  crossref
    9. Jovanovic B. Jovanovic V., “Virtual billiards in pseudo-Euclidean spaces: discrete Hamiltonian and contact integrability”, Discret. Contin. Dyn. Syst., 37:10 (2017), 5163–5190  crossref  zmath  isi  scopus
    10. Božidar Jovanović, “Billiards on constant curvature spaces and generating functions for systems with constraints”, Theor. Appl. Mech., 44:1 (2017), 103–114  mathnet  crossref
    11. Alain Albouy, “Projective Dynamics and First Integrals”, Regul. Chaotic Dyn., 20:3 (2015), 247–276  mathnet  crossref  mathscinet  zmath  adsnasa
    12. Albouy A., “on the Force Fields Which Are Homogeneous of Degree-3”, Extended Abstracts Spring 2014: Hamiltonian Systems and Celestial Mechanics; Virus Dynamics and Evolution, Trends in Mathematics, eds. Corbera M., Cors J., Llibre J., Birkhauser Boston, 2015, 3–7  crossref  isi
    13. Božidar Jovanović, “The Jacobi-Rosochatius Problem on an Ellipsoid: the Lax Representations and Billiards”, Arch Rational Mech Anal, 210:1 (2013), 101  crossref
    14. Duval C., Valent G., “A new integrable system on the sphere and conformally equivariant quantization”, J Geom Phys, 61:8 (2011), 1329–1347  crossref  mathscinet  zmath  adsnasa  isi  elib
    15. V. Dragović, M. Radnović, “Integrable billiards and quadrics”, Russian Math. Surveys, 65:2 (2010), 319–379  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    16. Boualem H., Brouzet R., Rakotondralambo J., “About the separability of completely integrable quasi-bi-Hamiltonian systems with compact levels”, Differential Geometry and Its Applications, 26:6 (2008), 583–591  crossref  mathscinet  zmath  isi
    17. Albouy A., “Projective dynamics and classical gravitation”, Regular & Chaotic Dynamics, 13:6 (2008), 525–542  crossref  mathscinet  zmath  adsnasa  isi
    18. The Mathematica GuideBook for Symbolics, 2006, 978  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:408
    References:80
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025