Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2013, Volume 13, Number 4, Pages 621–630
DOI: https://doi.org/10.17323/1609-4514-2013-13-4-621-630
(Mi mmj507)
 

This article is cited in 2 scientific papers (total in 2 papers)

Angular momentum and Horn's problem

Alain Chencinerab, Hugo Jiménez-Pérezc

a Department of Mathematics, University Paris 7
b Observatoire de Paris, IMCCE (UMR 8028), ASD 77, avenue Denfert-Rochereau, 75014 Paris, France
c Institut de Physique du Globe de Paris (UMR 7154), Department of Seismology 1, rue Jussieu, 75238 Paris Cedex 05, France
Full-text PDF Citations (2)
References:
Abstract: We prove a conjecture made by the first named author: Given an nn-body central configuration X0X0 in the euclidean space EE of dimension 2p2p, let ImFImF be the set of decreasing real pp-tuples (ν1,ν2,,νp)(ν1,ν2,,νp) such that {±iν1,±iν2,,±iνp}{±iν1,±iν2,,±iνp} is the spectrum of the angular momentum of some (periodic) relative equilibrium motion of X0X0 in EE. Then ImFImF is a convex polytope. The proof consists in showing that there exist two, generically (p1)(p1)-dimensional, convex polytopes P1P1 and P2P2 in Rp such that P1ImFP2 and that these two polytopes coincide.
P1, introduced earlier in a paper by the first author, is the set of spectra corresponding to the hermitian structures J on E which are “adapted” to the symmetries of the inertia matrix S0; it is associated with Horn's problem for the sum of p×p real symmetric matrices with spectra σ and σ+ whose union is the spectrum of S0.
P2 is the orthogonal projection onto the set of "hermitian spectra" of the polytope P associated with Horn's problem for the sum of 2p×2p real symmetric matrices having each the same spectrum as S0.
The equality P1=P2 follows directly from a deep combinatorial lemma by S. Fomin, W. Fulton, C. K. Li, and Y. T. Poon, which characterizes those of the sums of two 2p×2p real symmetric matrices with the same spectrum which are hermitian for some hermitian structure.
Key words and phrases: n-body problem, relative equilibrium, angular momentum, Horn's problem.
Received: December 22, 2011
Bibliographic databases:
Document Type: Article
Language: English
Citation: Alain Chenciner, Hugo Jiménez-Pérez, “Angular momentum and Horn's problem”, Mosc. Math. J., 13:4 (2013), 621–630
Citation in format AMSBIB
\Bibitem{CheJim13}
\by Alain~Chenciner, Hugo~Jim\'enez-P\'erez
\paper Angular momentum and Horn's problem
\jour Mosc. Math.~J.
\yr 2013
\vol 13
\issue 4
\pages 621--630
\mathnet{http://mi.mathnet.ru/mmj507}
\crossref{https://doi.org/10.17323/1609-4514-2013-13-4-621-630}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3184075}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000330037700004}
Linking options:
  • https://www.mathnet.ru/eng/mmj507
  • https://www.mathnet.ru/eng/mmj/v13/i4/p621
  • This publication is cited in the following 2 articles:
    1. G. Heckman, L. Zhao, “Angular momenta of relative equilibrium motions and real moment map geometry”, Invent. Math., 205:3 (2016), 671–691  crossref  mathscinet  zmath  isi  scopus
    2. Alain Chenciner, Bernard Leclerc, “Between Two Moments”, Regul. Chaotic Dyn., 19:3 (2014), 289–295  mathnet  crossref  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:327
    References:73
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025