Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2013, Volume 13, Number 2, Pages 193–232
DOI: https://doi.org/10.17323/1609-4514-2013-13-2-193-232
(Mi mmj495)
 

This article is cited in 23 scientific papers (total in 23 papers)

The Young bouquet and its boundary

Alexei Borodinabc, Grigori Olshanskidce

a Massachusetts Institute of Technology, USA
b California Institute of Technology, USA
c Institute for Information Transmission Problems, Moscow, Russia
d Independent University of Moscow, Russia
e National Research University Higher School of Economics, 20 Myasnitskaya Ulitsa, Moscow 101000, Russia
Full-text PDF Citations (23)
References:
Abstract: The classification results for the extreme characters of two basic “big” groups, the infinite symmetric group S()S() and the infinite-dimensional unitary group U()U(), are remarkably similar. It does not seem to be possible to explain this phenomenon using a suitable extension of the Schur–Weyl duality to infinite dimension. We suggest an explanation of a different nature that does not have analogs in the classical representation theory.
We start from the combinatorial/probabilistic approach to characters of “big” groups initiated by Vershik and Kerov. In this approach, the space of extreme characters is viewed as a boundary of a certain infinite graph. In the cases of S()S() and U()U(), those are the Young graph and the Gelfand–Tsetlin graph, respectively. We introduce a new related object that we call the Young bouquet. It is a poset with continuous grading whose boundary we define and compute. We show that this boundary is a cone over the boundary of the Young graph, and at the same time it is also a degeneration of the boundary of the Gelfand–Tsetlin graph.
The Young bouquet has an application to constructing infinite-dimensional Markov processes with determinantal correlation functions.
Key words and phrases: Young graph, Gelfand–Tsetlin graph, entrance boundary, infinite symmetric group, infinite-dimensional unitary group, characters, Gibbs measures.
Received: October 19, 2011; in revised form September 18, 2012
Bibliographic databases:
Document Type: Article
Language: English
Citation: Alexei Borodin, Grigori Olshanski, “The Young bouquet and its boundary”, Mosc. Math. J., 13:2 (2013), 193–232
Citation in format AMSBIB
\Bibitem{BorOls13}
\by Alexei~Borodin, Grigori~Olshanski
\paper The Young bouquet and its boundary
\jour Mosc. Math.~J.
\yr 2013
\vol 13
\issue 2
\pages 193--232
\mathnet{http://mi.mathnet.ru/mmj495}
\crossref{https://doi.org/10.17323/1609-4514-2013-13-2-193-232}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3134905}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000317381000001}
Linking options:
  • https://www.mathnet.ru/eng/mmj495
  • https://www.mathnet.ru/eng/mmj/v13/i2/p193
  • This publication is cited in the following 23 articles:
    1. G. I. Olshanski, “Characters of classical groups, Schur-type functions and discrete splines”, Sb. Math., 214:11 (2023), 1585–1626  mathnet  mathnet  crossref  crossref  isi  scopus
    2. Hai Lin, “Coherent state excitations and string-added coherent states in gauge-gravity correspondence”, Nuclear Physics B, 986 (2023), 116066  crossref
    3. Petrov L., Saenz A., “Mapping Tasep Back in Time”, Probab. Theory Relat. Field, 182:1-2 (2022), 481–530  crossref  mathscinet  isi  scopus
    4. Assiotis T., Keating J.P., “Moments of Moments of Characteristic Polynomials of Random Unitary Matrices and Lattice Point Counts”, Random Matrices-Theor. Appl., 10:2 (2021), 2150019  crossref  mathscinet  isi  scopus
    5. Diaz P., “Backgrounds From Tensor Models: a Proposal”, Phys. Rev. D, 103:6 (2021), 066010  crossref  mathscinet  isi  scopus
    6. Grigori Olshanski, “Macdonald-Level Extension of Beta Ensembles and Large-N Limit Transition”, Commun. Math. Phys., 385:1 (2021), 595  crossref
    7. Gorin V., Rahman M., “Random Sorting Networks: Local Statistics Via Random Matrix Laws”, Probab. Theory Relat. Field, 175:1-2 (2019), 45–96  crossref  mathscinet  zmath  isi  scopus
    8. Bufetov A., Gorin V., “Fourier Transform on High-Dimensional Unitary Groups With Applications to Random Tilings”, Duke Math. J., 168:13 (2019), 2559–2649  crossref  mathscinet  zmath  isi  scopus
    9. Assiotis T., “on a Gateway Between the Laguerre Process and Dynamics on Partitions”, ALEA-Latin Am. J. Probab. Math. Stat., 16:2 (2019), 1055–1076  crossref  mathscinet  zmath  isi
    10. P. Tarrago, “Zigzag diagrams and Martin boundary”, Ann. Probab., 46:5 (2018), 2562–2620  crossref  mathscinet  zmath  isi  scopus
    11. H. Lin, K. Zeng, “Detecting topology change via correlations and entanglement from gauge/gravity correspondence”, J. Math. Phys., 59:3 (2018), 032301  crossref  mathscinet  zmath  isi  scopus
    12. G. I. Olshanski, “Diffusion processes on the Thoma cone”, Funct. Anal. Appl., 50:3 (2016), 237–240  mathnet  crossref  crossref  mathscinet  isi  elib
    13. P. Diaz, G. Kemp, A. Veliz-Osorio, “Counting paths with Schur transitions”, Nucl. Phys. B, 911 (2016), 295–317  crossref  zmath  isi  scopus
    14. G. Olshanski, “The representation ring of the unitary groups and Markov processes of algebraic origin”, Adv. Math., 300 (2016), 544–615  crossref  mathscinet  zmath  isi  scopus
    15. P. Diaz, H. Lin, A. Veliz-Osorio, “Graph duality as an instrument of gauge-string correspondence”, J. Math. Phys., 57:5 (2016), 052302  crossref  mathscinet  zmath  isi  scopus
    16. G. Olshanski, “Markov dynamics on the dual object to the infinite-dimensional unitary group”, Probability and Statistical Physics in St. Petersburg, Proceedings of Symposia in Pure Mathematics, 91, eds. V. Sidoravicius, S. Smirnov, Amer. Math. Soc., 2016, 373–394  crossref  mathscinet  isi
    17. J. Math. Sci. (N. Y.), 215:6 (2016), 755–768  mathnet  crossref  mathscinet
    18. Bufetov A., Petrov L., “Law of Large Numbers For Infinite Random Matrices Over a Finite Field”, Sel. Math.-New Ser., 21:4 (2015), 1271–1338  crossref  mathscinet  zmath  isi  elib  scopus
    19. Bufetov A., Gorin V., “Representations of Classical Lie Groups and Quantized Free Convolution”, Geom. Funct. Anal., 25:3 (2015), 763–814  crossref  mathscinet  zmath  isi  elib  scopus
    20. J. Math. Sci. (N. Y.), 200:6 (2014), 671–676  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:473
    References:122
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025