Loading [MathJax]/jax/output/SVG/config.js
Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2010, Volume 10, Number 2, Pages 337–342
DOI: https://doi.org/10.17323/1609-4514-2010-10-2-337-342
(Mi mmj383)
 

This article is cited in 34 scientific papers (total in 34 papers)

Interlocking of convex polyhedra: towards a geometric theory of fragmented solids

A. J. Kanel-Belovabc, A. V. Dyskind, Y. Estrinef, E. Pasternakg, I. A. Ivanov-Pogodaevh

a Moscow Institute of Open Education, Moscow, Russia
b Department of Mathematics, Bar Ilan University, Ramat Gan, Israel
c International University Bremen, Bremen, Germany
d School of Civil and Resource Engineering, The University of Western Australia, Crawley, WA, Australia
e ARC Centre of Excellence for Design in Light Metals, Department of Materials Engineering, Monash University, Clayton, Vic., Australia
f CSIRO Division of Manufacturing and Materials Technology, Clayton, Vic., Australia
g School of Mechanical Engineering, The University of Western Australia, Crawley, WA, Australia
h Department of Mechanics and Mathematics, Moscow State University, Moscow, Russia
Full-text PDF Citations (34)
References:
Abstract: The article presents arrangements of identical regular polyhedra with very special and curious properties. Namely, the solids are situated in a sort of a layer and are interlocked in the sense that no one of them can be moved out without disturbing others. This situation cannot happen in the plane. First examples of this sort (composed of irregular convex polyhedra) were complicated and were constructed in a non regular way by G. Galperin. The examples presented here were constructed in framework of applied studies by the authors, C. Khor and M. Glickman and were not described in mathematical publications. The full version of this paper is presented here: http://arxiv.org/abs/0812.5089.
Key words and phrases: interlocking structures, combinatorial geometry, convex polyhedron, tilling.
Received: November 7, 2006; in revised form January 7, 2007
Bibliographic databases:
Document Type: Article
MSC: 52B10, 74R
Language: English
Citation: A. J. Kanel-Belov, A. V. Dyskin, Y. Estrin, E. Pasternak, I. A. Ivanov-Pogodaev, “Interlocking of convex polyhedra: towards a geometric theory of fragmented solids”, Mosc. Math. J., 10:2 (2010), 337–342
Citation in format AMSBIB
\Bibitem{KanDysEst10}
\by A.~J.~Kanel-Belov, A.~V.~Dyskin, Y.~Estrin, E.~Pasternak, I.~A.~Ivanov-Pogodaev
\paper Interlocking of convex polyhedra: towards a~geometric theory of fragmented solids
\jour Mosc. Math.~J.
\yr 2010
\vol 10
\issue 2
\pages 337--342
\mathnet{http://mi.mathnet.ru/mmj383}
\crossref{https://doi.org/10.17323/1609-4514-2010-10-2-337-342}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2722801}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000279342400004}
Linking options:
  • https://www.mathnet.ru/eng/mmj383
  • https://www.mathnet.ru/eng/mmj/v10/i2/p337
  • This publication is cited in the following 34 articles:
    1. Erfan ZamaniGoldeh, Theodoros Dounas, Asterios Agkathidis, “Discretisation strategies in architectural design process: a procedural classification system”, Architectural Science Review, 2025, 1  crossref
    2. V. O. Manturov, A. Ya. Kanel-Belov, S. Kim, F. K. Nilov, “Two-Dimensional Self-Trapping Structures in Three-Dimensional Space”, Dokl. Math., 2024  crossref
    3. Kheira Benyahia, Hichem Seriket, Sébastien Blanquer, Samuel Gomes, Mahdi Bodaghi, Jean-Claude André, Kun Zhou, H Jerry Qi, Frédéric Demoly, “Advancing 4D printing through designing interlocking blocks: enhancing deformation uniformity in active composite structures”, Smart Mater. Struct., 33:5 (2024), 055023  crossref
    4. V. O. Manturova, A. Ya. Kanel-Belov, S. Kim, F. K. Nilov, “Two-dimensional self-trapping structures in three-dimensional space”, Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, 515:1 (2024), 92  crossref
    5. Reymond Akpanya, Tom Goertzen, Alice C. Niemeyer, “From Tilings of Orientable Surfaces to Topological Interlocking Assemblies”, Applied Sciences, 14:16 (2024), 7276  crossref
    6. Tom Goertzen, Domen Macek, Lukas Schnelle, Meike Weiß, Stefanie Reese, Hagen Holthusen, Alice C. Niemeyer, “Influence of block arrangement on mechanical performance in topological interlocking assemblies: A study of the versatile block”, International Journal of Solids and Structures, 2024, 113102  crossref
    7. Tobias Neef, Tom Goertzen, Alice Niemeyer, Viktor Mechtcherine, “Materialsparende Betondecke aus 3D‐gedruckten Verriegelungsblöcken”, Beton und Stahlbetonbau, 2024  crossref
    8. Estrin Yu., Beygelzimer Ya., Kulagin R., Gumbsch P., Fratzl P., Zhu Yu., Hahn H., “Architecturing Materials At Mesoscale: Some Current Trends”, Mater. Res. Lett., 9:10 (2021), 399–421  crossref  isi  scopus
    9. Estrin Yu., Krishnamurthy V.R., Akleman E., “Design of Architectured Materials Based on Topological and Geometrical Interlocking”, J. Mater. Res. Technol-JMRT, 15 (2021), 1165–1178  crossref  isi  scopus
    10. Wang Z., Song P., Pauly M., “State of the Art on Computational Design of Assemblies With Rigid Parts”, Comput. Graph. Forum, 40:2 (2021), 633–657  crossref  isi  scopus
    11. Aharoni L., Bachelet I., Carstensen V J., “Topology Optimization of Rigid Interlocking Assemblies”, Comput. Struct., 250 (2021), 106521  crossref  isi  scopus
    12. Williams A., Siegmund T., “Mechanics of Topologically Interlocked Material Systems Under Point Load: Archimedean and Laves Tiling”, Int. J. Mech. Sci., 190 (2021), 106016  crossref  isi  scopus
    13. Cornelie Leopold, Handbook of the Mathematics of the Arts and Sciences, 2021, 291  crossref
    14. Vianney Loing, Olivier Baverel, Jean-François Caron, Romain Mesnil, “Free-form structures from topologically interlocking masonries”, Automation in Construction, 113 (2020), 103117  crossref
    15. Casapulla C., Mousavian E., Zarghani M., “a Digital Tool to Design Structurally Feasible Semi-Circular Masonry Arches Composed of Interlocking Blocks”, Comput. Struct., 221 (2019), 111–126  crossref  isi  scopus
    16. Cornelie Leopold, Handbook of the Mathematics of the Arts and Sciences, 2019, 1  crossref
    17. Cornelie Leopold, Handbook of the Mathematics of the Arts and Sciences, 2019, 1  crossref
    18. Chao Gao, Josef Kiendl, “Short review on architectured materials with topological interlocking mechanisms”, Mat Design Process Comm, 1:1 (2019), e31  crossref
    19. A. V. Dyskin, Yuri Estrin, E. Pasternak, Springer Series in Materials Science, 282, Architectured Materials in Nature and Engineering, 2019, 23  crossref
    20. Zareiyan B., Khoshnevis B., “Effects of Interlocking on Interlayer Adhesion and Strength of Structures in 3D Printing of Concrete”, Autom. Constr., 83 (2017), 212–221  crossref  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:525
    References:104
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025