Loading [MathJax]/jax/output/SVG/config.js
Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2004, Volume 4, Number 2, Pages 377–440
DOI: https://doi.org/10.17323/1609-4514-2004-4-2-377-440
(Mi mmj154)
 

This article is cited in 47 scientific papers (total in 47 papers)

Helix theory

A. L. Gorodentsevab, S. A. Kuleshovbc

a Institute for Theoretical and Experimental Physics (Russian Federation State Scientific Center)
b Independent University of Moscow
c N. E. Zhukovskii Military Aviation Engineering University
Full-text PDF Citations (47)
References:
Abstract: This is a detailed review of helix theory, which describes exceptional sheaves and exceptional bases for derived categories of coherent sheaves on Fano varieties. We explain systematically all basic ideas and constructions related to exceptional objects. Projective spaces and Del Pezzo surfaces are considered especially extensively. Some arithmetic relationships with the mirror symmetry phenomenon are discussed as well. This paper may be considered as a necessary supplement to the book [HuLe], which completely ignores rich structures beyond the zero-dimensional moduli spaces.
Key words and phrases: Exceptional collections, mutations, semiorthogonal decompositions in triangulated categories.
Received: May 30, 2003
Bibliographic databases:
Language: English
Citation: A. L. Gorodentsev, S. A. Kuleshov, “Helix theory”, Mosc. Math. J., 4:2 (2004), 377–440
Citation in format AMSBIB
\Bibitem{GorKul04}
\by A.~L.~Gorodentsev, S.~A.~Kuleshov
\paper Helix theory
\jour Mosc. Math.~J.
\yr 2004
\vol 4
\issue 2
\pages 377--440
\mathnet{http://mi.mathnet.ru/mmj154}
\crossref{https://doi.org/10.17323/1609-4514-2004-4-2-377-440}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2108443}
\zmath{https://zbmath.org/?q=an:1072.14020}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000208594700004}
Linking options:
  • https://www.mathnet.ru/eng/mmj154
  • https://www.mathnet.ru/eng/mmj/v4/i2/p377
  • This publication is cited in the following 47 articles:
    1. Filip Gawron, Ozhan Genc, “$\ell $-away ACM bundles on Fano surfaces”, Boll Unione Mat Ital, 17:1 (2024), 75  crossref
    2. Tomoki Yoshida, “Full exceptional collections of line bundles on the blow-up of ${\mathbb {P}}^{5}$ along Segre threefold”, manuscripta math., 2024  crossref
    3. Johannes Krah, “Mutations of numerically exceptional collections on surfaces”, Math. Z., 307:4 (2024)  crossref
    4. Giordano Cotti, Boris A. Dubrovin, Davide Guzzetti, Lecture Notes in Mathematics, 2356, Helix Structures in Quantum Cohomology of Fano Varieties, 2024, 125  crossref
    5. Giordano Cotti, Boris A. Dubrovin, Davide Guzzetti, Lecture Notes in Mathematics, 2356, Helix Structures in Quantum Cohomology of Fano Varieties, 2024, 53  crossref
    6. Giordano Cotti, Boris A. Dubrovin, Davide Guzzetti, Lecture Notes in Mathematics, 2356, Helix Structures in Quantum Cohomology of Fano Varieties, 2024, 1  crossref
    7. A. V. Fonarev, “Dual exceptional collections on Lagrangian Grassmannians”, Sb. Math., 214:12 (2023), 1779–1800  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    8. Umut Varolgunes, “Seifert form of chain-type invertible singularities”, Kyoto J. Math., 63:1 (2023)  crossref
    9. Saša Novaković, “Ulrich bundles on Brauer–Severi varieties”, Proc. Amer. Math. Soc., 152:1 (2023), 7  crossref
    10. Emre Coskun, Ozhan Genc, “Ulrich trichotomy on del Pezzo surfaces”, Advances in Geometry, 23:1 (2023), 51  crossref
    11. Paul Hacking, Ailsa Keating, “Homological mirror symmetry for log Calabi–Yau surfaces”, Geom. Topol., 26:8 (2023), 3747  crossref
    12. F. Malaspina, “Ulrich bundles of arbitrary rank on Segre-Veronese varieties”, Journal of Algebra, 625 (2023), 46  crossref
    13. Dmitry Galakhov, “On supersymmetric interface defects, brane parallel transport, order-disorder transition and homological mirror symmetry”, J. High Energ. Phys., 2022:10 (2022)  crossref
    14. V. Antonelli, F. Malaspina, “H-instanton bundles on three-dimensional polarized projective varieties”, Journal of Algebra, 598 (2022), 570  crossref
    15. Faenzi D., Malaspina F., Sanna G., “Non-Ulrich Representation Type”, Algebraic Geom., 8:4 (2021), 405–429  crossref  mathscinet  isi  scopus
    16. Dimitrov G., Katzarkov L., “Noncommutative Counting Invariants and Curve Complexes”, Int. Math. Res. Notices, 2021, rnaa374  crossref  isi
    17. Antonelli V., Casnati G., Genc O., “Instanton Bundles on P-1 X F-1”, Commun. Algebr., 49:8 (2021), 3594–3613  crossref  mathscinet  isi  scopus
    18. Vincenzo Antonelli, “Characterization of Ulrich bundles on Hirzebruch surfaces”, Rev Mat Complut, 34:1 (2021), 43  crossref
    19. Giordano Cotti, Alexander Varchenko, Proceedings of Symposia in Pure Mathematics, 103.1, Integrability, Quantization, and Geometry, 2021, 101  crossref
    20. Giordano Cotti, Boris Dubrovin, Davide Guzzetti, “Local Moduli of Semisimple Frobenius Coalescent Structures”, SIGMA, 16 (2020), 040, 105 pp.  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:929
    Full-text PDF :1
    References:191
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025