Loading [MathJax]/jax/output/SVG/config.js
Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2003, Volume 3, Number 3, Pages 1113–1144
DOI: https://doi.org/10.17323/1609-4514-2003-3-3-1113-1144
(Mi mmj124)
 

This article is cited in 47 scientific papers (total in 47 papers)

The classical KAM theory at the dawn of the twenty-first century

M. B. Sevryuk

Institute of Energy Problems of Chemical Physics, Russian Academy of Sciences
Full-text PDF Citations (47)
References:
Abstract: We survey several recent achievements in KAM theory. The achievements chosen pertain to Hamiltonian systems only and are closely connected with the content of Kolmogorov's original theorem of 1954. They include weak non-degeneracy conditions, Gevrey smoothness of families of perturbed invariant tori, “exponential condensation” of perturbed tori, destruction mechanisms of resonant unperturbed tori, excitation of the elliptic normal modes of the unperturbed tori, and “atropic” invariant tori (i.e., tori that are neither isotropic nor coisotropic). The exposition is informal and nontechnical, and, as a rule, the methods of proofs are not discussed.
Key words and phrases: KAM theory, Hamiltonian systems, invariant tori, quasi-periodic motions.
Received: June 22, 2002; in revised form October 22, 2002
Bibliographic databases:
MSC: Primary 37J40; Secondary 26E10, 58A10, 70H08
Language: English
Citation: M. B. Sevryuk, “The classical KAM theory at the dawn of the twenty-first century”, Mosc. Math. J., 3:3 (2003), 1113–1144
Citation in format AMSBIB
\Bibitem{Sev03}
\by M.~B.~Sevryuk
\paper The classical KAM theory at the dawn of the twenty-first century
\jour Mosc. Math.~J.
\yr 2003
\vol 3
\issue 3
\pages 1113--1144
\mathnet{http://mi.mathnet.ru/mmj124}
\crossref{https://doi.org/10.17323/1609-4514-2003-3-3-1113-1144}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2078576}
\zmath{https://zbmath.org/?q=an:1121.37045}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000208594300017}
Linking options:
  • https://www.mathnet.ru/eng/mmj124
  • https://www.mathnet.ru/eng/mmj/v3/i3/p1113
  • This publication is cited in the following 47 articles:
    1. Weichao Qian, Xue Yang, Yong Li, “Partial Frequency and Frequency Ratio in Multiscale KAM Formulism”, J Dyn Diff Equat, 2025  crossref
    2. Xianghong Gong, Laurent Stolovitch, “On neighborhoods of embedded complex tori”, Math. Ann., 2024  crossref
    3. Weichao Qian, “KAM THEOREM AND ISO-ENERGETIC KAM THEOREM ON POISSON MANIFOLD”, jaac, 13:2 (2023), 1088  crossref
    4. Luigi Chierchia, Michela Procesi, Encyclopedia of Complexity and Systems Science Series, Perturbation Theory, 2022, 247  crossref
    5. Francesco Fassò, Encyclopedia of Complexity and Systems Science Series, Perturbation Theory, 2022, 307  crossref
    6. Francesco Fassò, Encyclopedia of Complexity and Systems Science, 2022, 1  crossref
    7. Sevryuk M.B., “Hamiltonian and Reversible Systems With Smooth Families of Invariant Tori”, Indag. Math.-New Ser., 32:2 (2021), 406–425  crossref  mathscinet  isi  scopus
    8. Sean Bauer, Nikola P. Petrov, “Existence of KAM tori for presymplectic vector fields”, ejde, 2020:01-132 (2020), 126  crossref
    9. Abed Bounemoura, Bassam Fayad, Laurent Niederman, “Super-exponential stability for generic real-analytic elliptic equilibrium points”, Advances in Mathematics, 366 (2020), 107088  crossref
    10. Ding Zh., Shang Z., “Numerical Invariant Tori of Symplectic Integrators For Integrable Hamiltonian Systems”, Sci. China-Math., 61:9 (2018), 1567–1588  crossref  mathscinet  zmath  isi  scopus
    11. Luigi Chierchia, Michela Procesi, Encyclopedia of Complexity and Systems Science, 2018, 1  crossref
    12. Mikhail B. Sevryuk, “Families of Invariant Tori in KAM Theory: Interplay of Integer Characteristics”, Regul. Chaotic Dyn., 22:6 (2017), 603–615  mathnet  crossref  mathscinet
    13. Bounemoura A., “Non-Degenerate Liouville Tori Are Kam Stable”, Adv. Math., 292 (2016), 42–51  crossref  mathscinet  zmath  isi
    14. Abed Bounemoura, “Generic Perturbations of Linear Integrable Hamiltonian Systems”, Regul. Chaotic Dyn., 21:6 (2016), 665–681  mathnet  crossref  mathscinet
    15. Bounemoura A., “Nekhoroshev'S Estimates For Quasi-Periodic Time-Dependent Perturbations”, Comment. Math. Helv., 91:4 (2016), 653–703  crossref  mathscinet  zmath  isi
    16. Cong F., Li H., “Quasi-Effective Stability For a Nearly Integrable Volume-Preserving Mapping”, Discrete Contin. Dyn. Syst.-Ser. B, 20:7 (2015), 1959–1970  crossref  mathscinet  zmath  isi
    17. Heinz Hanßmann, Encyclopedia of Complexity and Systems Science, 2015, 1  crossref
    18. Abed Bounemoura, “A KAM theorem through Dirichlet's box and Khintchine's transference principles”, Mosc. Math. J., 14:4 (2014), 697–709  mathnet  crossref  mathscinet
    19. Mi L., Lu Sh., Cong H., “Existence of 3-Dimensional Tori For 1D Complex Ginzburg-Landau Equation Via a Degenerate Kam Theorem”, J. Dyn. Differ. Equ., 26:1 (2014), 21–56  crossref  mathscinet  zmath  isi  elib
    20. Wiggins S., Mancho A.M., “Barriers To Transport in Aperiodically Time-Dependent Two-Dimensional Velocity Fields: Nekhoroshev'S Theorem and “Nearly Invariant” Tori”, Nonlinear Process Geophys., 21:1 (2014), 165–185  crossref  mathscinet  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:763
    References:146
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025