Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Model.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 2006, Volume 18, Number 7, Pages 43–52 (Mi mm45)  

This article is cited in 11 scientific papers (total in 12 papers)

Two variants of economical method for solving of the transport equation in rz geometry on the basis of transition to Vladimirov's variables

E. N. Aristovaa, D. F. Baydinb, V. Ya. Gol'dina

a Institute for Mathematical Modelling, Russian Academy of Sciences
b Moscow Institute of Physics and Technology
References:
Abstract: The method for numerical solving of 2D steady transport equation on the basis of transition to the Vladimirov's variables have been suggested. The spatial and angular meshes are rigidly connected in classical variant of Vladimirov's method, that is not convenient in many practical cases. The algorithm for equation solving is suggested with independent construction of these meshes. It allows explicitly resolve the structure of all logarithmical discontinuities of solution, which is immanent for problems with spherical and cylindrical geometry. Two variants of the method has been suggested: pure characteristical one and conservative characteristical method. It has been shown for test problem with exact solution that for rough meshes conservative characteristical method allows to construct solution of high accuracy, especially for quasi-diffusion tensor.
Received: 12.12.2005
Bibliographic databases:
Language: Russian
Citation: E. N. Aristova, D. F. Baydin, V. Ya. Gol'din, “Two variants of economical method for solving of the transport equation in rz geometry on the basis of transition to Vladimirov's variables”, Mat. Model., 18:7 (2006), 43–52
Citation in format AMSBIB
\Bibitem{AriBayGol06}
\by E.~N.~Aristova, D.~F.~Baydin, V.~Ya.~Gol'din
\paper Two variants of economical method for solving of the transport equation in $r-z$ geometry on the basis of transition to Vladimirov's variables
\jour Mat. Model.
\yr 2006
\vol 18
\issue 7
\pages 43--52
\mathnet{http://mi.mathnet.ru/mm45}
\zmath{https://zbmath.org/?q=an:1099.76042}
Linking options:
  • https://www.mathnet.ru/eng/mm45
  • https://www.mathnet.ru/eng/mm/v18/i7/p43
  • This publication is cited in the following 12 articles:
    1. A. I. Lobanov, “Nauchnye i pedagogicheskie shkoly Aleksandra Sergeevicha Kholodova”, Kompyuternye issledovaniya i modelirovanie, 10:5 (2018), 561–579  mathnet  crossref
    2. E. N. Aristova, G. O. Astafurov, “The second order short-characteristics method for the solution of the transport equation on a tetrahedron grid”, Math. Models Comput. Simul., 9:1 (2017), 40–47  mathnet  crossref  elib
    3. E. N. Aristova, D. F. Baydin, B. V. Rogov, “Bicompact scheme for linear inhomogeneous transport equation”, Math. Models Comput. Simul., 5:6 (2013), 586–594  mathnet  crossref  mathscinet
    4. E. N. Aristova, “Bicompact scheme for linear inhomogeneous transport equation in a case of a big optical width”, Math. Models Comput. Simul., 6:3 (2014), 227–238  mathnet  crossref  mathscinet  elib
    5. E. N. Aristova, D. F. Baydin, “Efficiency of quasi-diffusion methods for calculation of crucial parameters of fast reactors”, Math. Models Comput. Simul., 4:6 (2012), 568–573  mathnet  crossref  elib
    6. E. N. Aristova, D. F. Baydin, “Quasidiffusion method realization for fast reactor critical parameters calculation in 3D hexagonal geometry”, Math. Models Comput. Simul., 5:2 (2013), 145–155  mathnet  crossref  mathscinet  elib
    7. E. N. Aristova, B. V. Rogov, “About implementation of boundary conditions in the bicompact schemes for a linear transport equation”, Math. Models Comput. Simul., 5:3 (2013), 199–207  mathnet  crossref  mathscinet
    8. E. N. Aristova, G. A. Pestryakova, S. G. Ponomarev, M. I. Stoinov, “Raschet neitronnykh potokov v otrazhatele pri ispolzovanii novykh uglerodnykh materialov”, Preprinty IPM im. M. V. Keldysha, 2012, 079, 12 pp.  mathnet
    9. E. N. Aristova, D. F. Baidin, “Ekonomichnyi metod resheniya uravneniya perenosa v 2D tsilindricheskoi i 3D geksagonalnoi geometriyakh dlya metoda kvazidiffuzii”, Kompyuternye issledovaniya i modelirovanie, 3:3 (2011), 279–286  mathnet  crossref
    10. E. N. Aristova, “Analog for monotone scheme for calculation of non self-conjugated system of quasi-diffusion equations in rz-geometry”, Math. Models Comput. Simul., 1:6 (2009), 745–756  mathnet  crossref  zmath
    11. E. N. Aristova, V. Ya. Gol'din, “Low-cost calculation of multigroup neutron transport equations for time-to-time recalculation of averaged over spectrum cross-sections”, Math. Models Comput. Simul., 1:5 (2009), 561–572  mathnet  crossref  zmath
    12. E. N. Aristova, V. Ya. Goldin, “Raschet uravneniya perenosa neitronov sovmestno s ravneniyami kvazidiffuzii v rz geometrii”, Matem. modelirovanie, 18:11 (2006), 61–66  mathnet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
    Statistics & downloads:
    Abstract page:632
    Full-text PDF :205
    References:93
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025