Loading [MathJax]/jax/output/SVG/config.js
Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Model.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 2019, Volume 31, Number 8, Pages 3–20
DOI: https://doi.org/10.1134/S023408791908001X
(Mi mm4100)
 

This article is cited in 21 scientific papers (total in 21 papers)

Modelling Russian users' political preferences

I. V. Kozitsinab, A. G. Chkhartishvilib, A. M. Marchenkoa, D. O. Norkina, S. D. Osipova, I. A. Utesheva, V. L. Goikoc, R. V. Palkinc, M. G. Myagkovdc

a Moscow Institute of Physics and Technology, Dolgoprudny, Russian Federation
b Trapeznikov Institute of Control Sciences RAS, Moscow, Russian Federation
c Tomsk State University, Tomsk, Russian Federation
d University of Oregon, Eugene, USA
References:
Abstract: In this paper, we present two machine learning models that can predict Russian VKontakte users' political preferences. They imply operationing at the users-level. We consider thoroughly its different applications; one of them is public opinion monitoring. To demonstrate it, we test them on the sample of 22 mil of Russian users of age. Finally, we retrieve two estimations of public opinion. In case we value the outcome of the 2018 Presidential election by these estimations, we get MAE of 12 and 19.4 percent correspondingly. Moreover, one of the algorithms finds correctly the first three places. Another prominent utility relates to the calibration of opinion dynamics models where we can use scores generated by the machine learning algorithms to estimate users' opinions numerically.
Keywords: users' political leaning prediction, online social networks analysis, opinion dynamics, machine learning, public opinion.
Funding agency Grant number
Russian Foundation for Basic Research 18-29-22042_мк
Received: 21.01.2019
Revised: 21.03.2019
Accepted: 08.04.2019
English version:
Mathematical Models and Computer Simulations, 2020, Volume 12, Issue 2, Pages 185–194
DOI: https://doi.org/10.1134/S2070048220020088
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: I. V. Kozitsin, A. G. Chkhartishvili, A. M. Marchenko, D. O. Norkin, S. D. Osipov, I. A. Uteshev, V. L. Goiko, R. V. Palkin, M. G. Myagkov, “Modelling Russian users' political preferences”, Mat. Model., 31:8 (2019), 3–20; Math. Models Comput. Simul., 12:2 (2020), 185–194
Citation in format AMSBIB
\Bibitem{KozChkMar19}
\by I.~V.~Kozitsin, A.~G.~Chkhartishvili, A.~M.~Marchenko, D.~O.~Norkin, S.~D.~Osipov, I.~A.~Uteshev, V.~L.~Goiko, R.~V.~Palkin, M.~G.~Myagkov
\paper Modelling Russian users' political preferences
\jour Mat. Model.
\yr 2019
\vol 31
\issue 8
\pages 3--20
\mathnet{http://mi.mathnet.ru/mm4100}
\crossref{https://doi.org/10.1134/S023408791908001X}
\elib{https://elibrary.ru/item.asp?id=38487764}
\transl
\jour Math. Models Comput. Simul.
\yr 2020
\vol 12
\issue 2
\pages 185--194
\crossref{https://doi.org/10.1134/S2070048220020088}
Linking options:
  • https://www.mathnet.ru/eng/mm4100
  • https://www.mathnet.ru/eng/mm/v31/i8/p3
  • This publication is cited in the following 21 articles:
    1. Nikolay Belotelov, Fedor Loginov, Communications in Computer and Information Science, 1913, Advances in Optimization and Applications, 2024, 147  crossref
    2. Vitaliy Kashpur, Alexey Baryshev, Galina Serbina, Alexander Gubanov, Ilya Demeshkin, “Possibilities of analyzing the network connectivity of ideological and monothematic radical online communities on VKontakte”, Sociology: methodology, methods, mathematical modeling (Sociology: 4M), 29:57 (2024), 42  crossref
    3. Vladislav N. Gezha, Ivan V. Kozitsin, “The Effects of Individuals' Opinion and Non-Opinion Characteristics on the Organization of Influence Networks in the Online Domain”, Computers, 12:6 (2023), 116  crossref
    4. Ivan V. Kozitsin, Alexander V. Gubanov, Eduard R. Sayfulin, Vyacheslav L. Goiko, “A nontrivial interplay between triadic closure, preferential, and anti-preferential attachment: New insights from online data”, Online Social Networks and Media, 34-35 (2023), 100248  crossref
    5. Kozitsin I.V., “Formal Models of Opinion Formation and Their Application to Real Data: Evidence From Online Social Networks”, J. Math. Sociol., 46:2 (2022), 120–147  crossref  mathscinet  zmath  isi  scopus
    6. Alexander Petrov, Lecture Notes in Networks and Systems, 503, Cybernetics Perspectives in Systems, 2022, 35  crossref
    7. D. A. Gubanov, “Methods for analysis of information influence in active network structures”, Autom. Remote Control, 83:5 (2022), 743–754  mathnet  mathnet  crossref  crossref
    8. Anna Karpova, Aleksei Savelev, Alexander Vilnin, Sergey Kuznetsov, “Method for Detecting Far-Right Extremist Communities on Social Media”, Social Sciences, 11:5 (2022), 200  crossref
    9. A. V. Glazkova, O. V. Zakharova, A. V. Zakharov, N. N. Moskvina, T. R. Enikeev, A. N. Hodyrev, V. K. Borovinskiy, I. N. Pupysheva, “Detecting mentions of green practices in social media based on text classification”, Model. Anal. Inform. Sist., 29:4 (2022), 316–332  mathnet  mathnet  crossref
    10. Jiefan Zhu, Yiping Yao, Wenjie Tang, Haoming Zhang, “Dynamic Parameter Calibration Framework for Opinion Dynamics Models”, Entropy, 24:8 (2022), 1112  crossref
    11. I. V. Kozitsin, “Opinion dynamics of online social network users: a micro-level analysis”, J. Math. Sociol., 2021  crossref  zmath  isi
    12. A. G. Chkhartishvili, “The problem of finding the median preference of individuals in a stochastic model”, Autom. Remote Control, 82:5 (2021), 853–862  mathnet  mathnet  crossref  crossref  isi  scopus
    13. Asmit Kumar Singh, Chirag Jain, Jivitesh Jain, Rishi Raj Jain, Shradha Sehgal, Tanisha Pandey, Ponnurangam Kumaraguru, Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, 2021, 193  crossref
    14. L. G. Byzov, D. A. Gubanov, I. V. Kozitsin, A. G. Chkhartishvili, “A Perfect Politician for Social Networks: an Approach to Analyzing Ideological Preferences of Users”, Autom Remote Control, 82:9 (2021), 1614  crossref
    15. D. A. Gubanov, “Vliyanie v sotsialnykh setyakh: varianty formalizatsii”, UBS, 85 (2020), 51–71  mathnet  crossref
    16. A. Peshkovskaya, M. Myagkov, “Eye gaze patterns of decision process in prosocial behavior”, Front. Behav. Neurosci., 14 (2020), 525087  crossref  isi
    17. Alexander Petrovich Mikhailov, Alexander Phoun Chzho Petrov, Gennadi Borisovich Pronchev, Olga Gennadevna Proncheva, Proceedings of 22nd Scientific Conference “Scientific Services & Internet – 2020”, Proceedings of 22nd Scientific Conference “Scientific Services & Internet – 2020”, 2020, 462  crossref
    18. Alexander Chkhartishvili, 2020 13th International Conference “Management of large-scale system development” (MLSD), 2020, 1  crossref
    19. Ivan V. Kozitsin, Alexander G. Chkhartishvili, 2020 13th International Conference “Management of large-scale system development” (MLSD), 2020, 1  crossref
    20. Tatiana Babkina, Anna Sedush, Olga Menshikova, Mikhail Myagkov, Communications in Computer and Information Science, 1340, Advances in Optimization and Applications, 2020, 145  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
    Statistics & downloads:
    Abstract page:644
    Full-text PDF :252
    References:64
    First page:36
     
      Contact us:
    math-net2025_03@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025