Loading [MathJax]/jax/output/SVG/config.js
Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Model.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 2019, Volume 31, Number 5, Pages 69–84
DOI: https://doi.org/10.1134/S0234087919050058
(Mi mm4073)
 

This article is cited in 12 scientific papers (total in 12 papers)

Variational entropic regularization of discontinuous Galerkin method for gas dynamics equations

Y. A. Kriksin, V. F. Tishkin

Keldysh Institute of Applied Mathematics of RAS
References:
Abstract: A constructive version of an arbitrary accuracy discontinuous Galerkin (DG) method solving gas dynamics equations is proposed. This DG method is based on the new variational principle of entropic regularization ensuring the implementation of discrete analogs of the conservation laws of mass, momentum, total energy and entropic inequality.
Keywords: gasdynamic equations, discontinuous Galerkin method, conservation laws, variational principle, entropic inequality.
Funding agency Grant number
Russian Science Foundation 17-71-30014
Received: 06.09.2018
Revised: 06.09.2018
Accepted: 22.10.2018
English version:
Mathematical Models and Computer Simulations, 2019, Volume 11, Issue 6, Pages 1032–1040
DOI: https://doi.org/10.1134/S2070048219060103
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: Y. A. Kriksin, V. F. Tishkin, “Variational entropic regularization of discontinuous Galerkin method for gas dynamics equations”, Mat. Model., 31:5 (2019), 69–84; Math. Models Comput. Simul., 11:6 (2019), 1032–1040
Citation in format AMSBIB
\Bibitem{KriTis19}
\by Y.~A.~Kriksin, V.~F.~Tishkin
\paper Variational entropic regularization of discontinuous Galerkin method for gas dynamics equations
\jour Mat. Model.
\yr 2019
\vol 31
\issue 5
\pages 69--84
\mathnet{http://mi.mathnet.ru/mm4073}
\crossref{https://doi.org/10.1134/S0234087919050058}
\elib{https://elibrary.ru/item.asp?id=37298174}
\transl
\jour Math. Models Comput. Simul.
\yr 2019
\vol 11
\issue 6
\pages 1032--1040
\crossref{https://doi.org/10.1134/S2070048219060103}
Linking options:
  • https://www.mathnet.ru/eng/mm4073
  • https://www.mathnet.ru/eng/mm/v31/i5/p69
  • This publication is cited in the following 12 articles:
    1. I. M. Kulikov, “Using piecewise parabolic reconstruction of physical variables in Rusanov’s solver. II. Special relativistic magnetohydrodynamics equations”, J. Appl. Industr. Math., 18:1 (2024), 81–92  mathnet  mathnet  crossref  crossref
    2. I. M. Kulikov, “Using piecewise parabolic reconstruction of physical variables in the Rusanov solver. I. The special relativistic hydrodynamics equations”, J. Appl. Industr. Math., 17:4 (2023), 737–749  mathnet  mathnet  crossref  crossref
    3. I. M. Kulikov, D. A. Karavaev, “Using a Low Dissipation Lax–Friedrichs Scheme for Numerical Modeling of Relativistic Flows”, Numer. Analys. Appl., 16:4 (2023), 326  crossref
    4. I. M. Kulikov, D. A. Karavaev, “A Piecewise-Parabolic Reconstruction of the Physical Variables in a Low-Dissipation HLL Method for the Numerical Solution of the Equations of Special Relativistic Hydrodynamics”, Numer. Analys. Appl., 16:1 (2023), 45  crossref
    5. O. R. Ragimli, Yu. A. Poveschenko, S. B. Popov, V. O. Podryga, P. I. Ragimli, “Dvukhsloinye polnostyu konservativnye skhemy gazovoi dinamiki s uzlovoi approksimatsiei i adaptivnoi regulyarizatsiei resheniya v peremennykh Eilera”, Preprinty IPM im. M. V. Keldysha, 2022, 008, 19 pp.  mathnet  crossref
    6. I. M. Kulikov, “A Piecewise-Linear Reconstruction to Reduce the Dissipation of the HLL Method in Solving the Gas Dynamics Equations”, Numer. Analys. Appl., 15:2 (2022), 112  crossref
    7. Igor Kulikov, Igor Chernykh, Dmitry Karavaev, Vladimir Prigarin, Anna Sapetina, Ivan Ulyanichev, Oleg Zavyalov, “A New Parallel Code Based on a Simple Piecewise Parabolic Method for Numerical Modeling of Colliding Flows in Relativistic Hydrodynamics”, Mathematics, 10:11 (2022), 1865  crossref
    8. O. R. Rahimly, Yu. A. Poveshchenko, S. B. Popov, “Two-layer 1D completely conservative difference schemes of gas dynamics with adaptive regularization”, Math. Models Comput. Simul., 14:5 (2022), 771–782  mathnet  crossref  crossref  mathscinet
    9. V. F. Masyagin, R. V. Zhalnin, M. E. Ladonkina, O. N. Terekhina, V. F. Tishkin, “Primenenie entropiinogo limitera dlya resheniya uravnenii gazovoi dinamiki s ispolzovaniem neyavnoi skhemy razryvnogo metoda Galerkina”, Preprinty IPM im. M. V. Keldysha, 2021, 007, 18 pp.  mathnet  crossref  elib
    10. Victor F. Masyagin, Communications in Computer and Information Science, 1413, Mathematical Modeling and Supercomputer Technologies, 2021, 33  crossref
    11. Yu. A. Kriksin, V. F. Tishkin, “Chislennoe reshenie zadachi Einfeldta na osnove razryvnogo metoda Galerkina”, Preprinty IPM im. M. V. Keldysha, 2019, 090, 22 pp.  mathnet  crossref  elib
    12. R. V. Zhalnin, V. F. Masyagin, E. E. Peskova, V. F. Tishkin, “Primenenie razryvnogo metoda Galerkina k modelirovaniyu dvumernykh techenii mnogokomponentnoi smesi idealnykh gazov na adaptivnykh lokalno izmelchayuschikhsya setkakh”, Zhurnal SVMO, 21:2 (2019), 244–258  mathnet  crossref  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
    Statistics & downloads:
    Abstract page:487
    Full-text PDF :128
    References:81
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025