Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Model.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 2017, Volume 29, Number 2, Pages 3–22 (Mi mm3811)  

This article is cited in 27 scientific papers (total in 27 papers)

Discontinuous Galerkin method on three-dimensional tetrahedral meshes. The usage of the operator programming method

M. M. Krasnova, P. A. Kuchugova, M. E. Ladonkinaba, V. F. Tishkinab

a Keldysh Institute for Applied Mathematics RAS, Moscow
b Lavrentyev Institute of Hydrodynamics of SB RAS, Novosibirsk
References:
Abstract: In the numerical simulation of gasdynamic flows in areas with complex geometry it is necessary to use detailed unstructured grids and numerical methods of high accuracy. Galerkin method with discontinuous basis functions or Discontinuous Galerkin Method (DGM) works well in dealing with such problems. This approach has several advantages inherent in both finite-element and finite-difference approximations. At the same time discontinuous Galerkin method has a significant computational complexity, so the corresponding implementation should efficiently use all available computational capacity. In order to speed up the calculations operator programming method was applied while creating the computational module.
Operator programming method allows writing mathematical formulas in programs in compact form and helps to port the programs to parallel architectures, such as NVidia CUDA and Intel Xeon Phi. Earlier the operator programming method was implemented for regular threedimensional Cartesian grids and tree-dimensional locally adaptive grids. In this work, the approach is applied to three-dimensional tetrahedron meshes. This demonstrates the possibility of implementation of the method on arbitrary tree-dimensional meshes. Besides, in this work we give the example of the usage of template metaptogramming methods of the C++ programming language to speed-up calculations.
Keywords: operator programming method, three-dimensional tetrahedral meshes, discontinuous Galerkin method, CUDA, template metaprogramming.
Funding agency Grant number
Russian Science Foundation 16-11-10033
Received: 23.05.2016
English version:
Mathematical Models and Computer Simulations, 2017, Volume 9, Issue 5, Pages 529–543
DOI: https://doi.org/10.1134/S2070048217050064
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: M. M. Krasnov, P. A. Kuchugov, M. E. Ladonkina, V. F. Tishkin, “Discontinuous Galerkin method on three-dimensional tetrahedral meshes. The usage of the operator programming method”, Mat. Model., 29:2 (2017), 3–22; Math. Models Comput. Simul., 9:5 (2017), 529–543
Citation in format AMSBIB
\Bibitem{KraKucLad17}
\by M.~M.~Krasnov, P.~A.~Kuchugov, M.~E.~Ladonkina, V.~F.~Tishkin
\paper Discontinuous Galerkin method on three-dimensional tetrahedral meshes. The usage of the operator programming method
\jour Mat. Model.
\yr 2017
\vol 29
\issue 2
\pages 3--22
\mathnet{http://mi.mathnet.ru/mm3811}
\elib{https://elibrary.ru/item.asp?id=28912730}
\transl
\jour Math. Models Comput. Simul.
\yr 2017
\vol 9
\issue 5
\pages 529--543
\crossref{https://doi.org/10.1134/S2070048217050064}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85029745632}
Linking options:
  • https://www.mathnet.ru/eng/mm3811
  • https://www.mathnet.ru/eng/mm/v29/i2/p3
  • This publication is cited in the following 27 articles:
    1. V. F. Tishkin, M. E. Ladonkina, “The Discontinuous Galerkin Method and its Implementation in the RAMEG3D Software Package”, CMIT, 7:2 (2023), 7  crossref
    2. S. A. Soukov, “Methods for Improving and Evaluating the Performance of Unstructured CFD Algorithms”, Math Models Comput Simul, 15:4 (2023), 717  crossref
    3. S. A. Sukov, “Methods for improving and evaluating the performance of unstructured CFD-algorithms”, Matem. Mod., 35:2 (2023), 30–42  mathnet  mathnet  crossref
    4. R. V. Zhalnin, V. F. Masyagin, V. F. Tishkin, “Reshenie dvumernykh zadach gazovoi dinamiki s ispolzovaniem neyavnoi skhemy dlya metoda Galerkina s razryvnymi bazisnymi funktsiyami na nestrukturirovannykh treugolnykh setkakh”, Sib. zhurn. vychisl. matem., 25:1 (2022), 19–32  mathnet  crossref  mathscinet
    5. M. M. Krasnov, M. E. Ladonkina, O. A. Neklyudova, V. F. Tishkin, “O vliyanii vybora chislennogo potoka na reshenie zadach s udarnymi volnami razryvnym metodom Galerkina”, Preprinty IPM im. M. V. Keldysha, 2022, 091, 21 pp.  mathnet  crossref
    6. Alexander Sukhinov, Alexander Chistyakov, Inna Kuznetsova, Yulia Belova, Elena Rahimbaeva, “Solving Hydrodynamic Problems Based on a Modified Upwind Leapfrog Scheme in Areas with Complex Geometry”, Mathematics, 10:18 (2022), 3248  crossref
    7. M. D. Bragin, O. A. Kovyrkina, M. E. Ladonkina, V. V. Ostapenko, V. F. Tishkin, N. A. Khandeeva, “Combined numerical schemes”, Comput. Math. Math. Phys., 62:11 (2022), 1743–1781  mathnet  mathnet  crossref  crossref
    8. Marina Ladonkina, Olga Nekliudova, Vladimir Tishkin, INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING ICCMSE 2021, 2611, INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING ICCMSE 2021, 2022, 050004  crossref
    9. V. F. Masyagin, R. V. Zhalnin, M. E. Ladonkina, O. N. Terekhina, V. F. Tishkin, “Primenenie entropiinogo limitera dlya resheniya uravnenii gazovoi dinamiki s ispolzovaniem neyavnoi skhemy razryvnogo metoda Galerkina”, Preprinty IPM im. M. V. Keldysha, 2021, 007, 18 pp.  mathnet  crossref  elib
    10. M. E. Ladonkina, O. A. Nekliudova, V. F. Tishkin, “Hybrid numerical flux for solving the problems of supersonic flow of solid bodies”, Math. Models Comput. Simul., 13:6 (2021), 1116–1121  mathnet  crossref  crossref
    11. N. M. Evstigneev, O. I. Ryabkov, “Application of the AmgX library to the discontinuous Galerkin methods for elliptic problems”, Parallel Computational Technologies, Communications in Computer and Information Science, 1437, eds. L. Sokolinsky, M. Zymbler, Springer, 2021, 178–193  crossref  isi
    12. V. Balashov, “A regularized isothermal phase-field model of two-phase solid-fluid mixture and its spatial dissipative discretization”, Russ. J. Numer. Anal. Math. Model, 36:4 (2021), 197–217  crossref  mathscinet  zmath  isi  scopus
    13. V. A. Balashov, E. B. Savenkov, “Regulyarizovannaya model tipa fazovogo polya dlya opisaniya sistemy «zhidkost–tverdoe telo» s uchetom khimicheskikh reaktsii”, Preprinty IPM im. M. V. Keldysha, 2021, 082, 20 pp.  mathnet  crossref
    14. A. V. Nikitina, A. E. Chistyakov, A. M. Atayan, “NUMERICAL IMPLEMENTATION OF A PARALLEL ALGORITHM FOR SOLVING THE PROBLEM OF POLLUTANT TRANSPORT IN A RESERVOIR ON A HIGH-PERFORMANCE COMPUTER SYSTEM”, vkit, 2021, no. 202, 27  crossref
    15. A M Atayan, “Solving the diffusion-convection problem using MPI parallel computing technology”, J. Phys.: Conf. Ser., 1902:1 (2021), 012098  crossref
    16. S. A. Sukov, “Load balancing method for heterogeneous CFD algorithms”, Zhurnal SVMO, 23:2 (2021), 193–206  mathnet  mathnet  crossref
    17. A E Chistyakov, A V Strazhko, A M Atayan, S V Protsenko, “Software development for calculating the polluted by suspension and other impurities zones volumes on the basis of graphics accelerator”, IOP Conf. Ser.: Mater. Sci. Eng., 1029:1 (2021), 012084  crossref
    18. Victor F. Masyagin, Communications in Computer and Information Science, 1413, Mathematical Modeling and Supercomputer Technologies, 2021, 33  crossref
    19. A I Sukhinov, A E Chistyakov, E A Protsenko, V V Sidoryakina, S V Protsenko, “Wave hydrodynamics discrete models construction and research”, IOP Conf. Ser.: Mater. Sci. Eng., 1029:1 (2021), 012086  crossref
    20. V. F. Tishkin, V. A. Gasilov, N. V. Zmitrenko, P. A. Kuchugov, M. E. Ladonkina, Yu. A. Poveschenko, “Modern methods of mathematical modeling of the development of hydrodynamic instabilities and turbulent mixing”, Math. Models Comput. Simul., 13:2 (2021), 311–327  mathnet  crossref  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
    Statistics & downloads:
    Abstract page:683
    Full-text PDF :226
    References:67
    First page:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025