Abstract:
The paper considers the reconstruction of body geometry basing on discrete elements of computational
domain. This problem arises when numerically simulating flow around solid bodies with
the use of immersed boundary method.
The analysis of possible techniques of reconstruction is presented. Based on them the method of
space reconstruction of bodies prescribed on unstructured meshes is built and used for the computation
of model problems.
Keywords:
numerical simulation, immersed boundary method, space triangulation, caching of data.
Citation:
I. V. Abalakin, N. S. Zhdanova, S. A. Soukov, “Reconstruction of body geometry on unstructured meshes when using immersed boundary method”, Mat. Model., 28:6 (2016), 77–88; Math. Models Comput. Simul., 9:1 (2017), 83–91
\Bibitem{AbaZhdSuk16}
\by I.~V.~Abalakin, N.~S.~Zhdanova, S.~A.~Soukov
\paper Reconstruction of body geometry on unstructured meshes when using immersed boundary method
\jour Mat. Model.
\yr 2016
\vol 28
\issue 6
\pages 77--88
\mathnet{http://mi.mathnet.ru/mm3740}
\elib{https://elibrary.ru/item.asp?id=26414270}
\transl
\jour Math. Models Comput. Simul.
\yr 2017
\vol 9
\issue 1
\pages 83--91
\crossref{https://doi.org/10.1134/S2070048217010033}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85011966188}
Linking options:
https://www.mathnet.ru/eng/mm3740
https://www.mathnet.ru/eng/mm/v28/i6/p77
This publication is cited in the following 2 articles:
S. K. Grigoriev, D. A. Zakharov, M. A. Kornilina, M. V. Yakobovskiy, “Dynamic load balancing using adaptive locally refined meshes”, Math. Models Comput. Simul., 16:2 (2024), 280–292
M. A. Kornilina, M. V. Yakobovskii, “Otsenka nakladnykh raskhodov pri vypolnenii raschetov na lokalno izmelchaemykh setkakh”, Preprinty IPM im. M. V. Keldysha, 2022, 102, 36 pp.